Abstract:
An ICP emission spectrometer is schematically configured to include an inductively coupled plasma generation unit, a light condensing unit, a spectroscope, a two-dimensional detection unit and a controller. The two-dimensional detection unit includes a CCD image sensor which has multiple pixels laid in a planar shape and detects emission light by causing the emission light emitted from the spectroscope to be imaged on the multiple pixels. Then, the controller determines a pixel used in detecting the emission light among the multiple pixels in accordance with an imaging shape of detection-targeted emission light.
Abstract:
The invention provides spectroscopic systems and spectrometers employing an optical interference filter module having a plurality of bandpass regions. In certain embodiments, the systems include a mechanism for wavelength tuning/scanning and wavelength band decoding based on an angular motion of one or more filters. A spectral processing algorithm separates the multiplexed wavelength-scanned bandpass regions and quantifies the concentrations of the analyzed chemical and/or biological species. The spectroscopic system allows for compact, multi-compound analysis, employing a single-element detector for maximum performance-to-cost ratio. The spectroscopic system also allows for high-sensitivity measurement and robust interference compensation.
Abstract:
An interferometer includes a first assembly having a base, a beam splitter assembly to split light into first and second portions, and a fixed mirror for reflecting the first portion of light; and a second assembly movable with respect to the first assembly, and having first and second scan carriages, and a movable mirror connected to the second scan carriage for reflecting the second portion of light. The beam splitter assembly combines the reflected first and second portions of light into a recombined radiation beam. Inner bearing flexures enable movement of the first scan carriage relative to the base, and outer bearing flexures enable movement of the second scan carriage relative to the first scan carriage, such that a plane containing the movable mirror is maintained parallel to multiple planes containing the movable mirror at respective distances between the second and first assemblies during scan movement of the movable mirror.
Abstract:
A system and method of high-speed microscopy using a two-photon microscope with spectral resolution. The microscope is operable to provide spectrally resolved, multi-dimensional images from a single scan of a sample. The microscope may include one of a multi-beam point scanning microscope, a single beam line scanning microscope, and a multi-beam line scanning microscope. The microscope includes a descanning arrangement such that emitted fluorescence is static on a receiving detector. The detector is a narrow detector with a width at least half the size of the length, to reduce the amount of pixel data being transmitted and improve scan speeds. The microscope may also incorporate one or more binning techniques whereby pixels are binned together to improve resolution or scan speeds.
Abstract:
A fluorescence spectrophotometer according to the present invention includes: a light source 1; a sample cell 3; an excitation-side light-dispersing system 2 for dispersing a light from the light source 1 and for casting a desired wavelength of light into the sample cell 3; an emission-side light-dispersing system 4 for dispersing a light emitted from the sample cell 3, the emission-side light-dispersing system 4 being located off an optical path of a transmitted light exiting from the sample cell 3 after being cast from the excitation-side light-dispersing system 2 into the sample cell 3; and a photodetector 5 capable of detecting, among the light from the emission-side light-dispersing system 4, an emission light having the same wavelength as the light cast from the excitation-side light-dispersing system 2 into the sample cell 3.
Abstract:
The bandwidth selection mechanism includes a first actuator mounted on a second face of a dispersive optical element, the second face being opposite from a reflective face, the first actuator having a first end coupled to a first end block and a second end coupled to a second end block, the first actuator being operative to apply equal and opposite forces to the first end block and the second end block to bend the body of the dispersive optical element along the longitudinal axis of the body and in a first direction normal to the reflective face of the dispersive optical element. The bandwidth selection mechanism also includes a second actuator being operative to apply equal and opposite forces to bend the body along the longitudinal axis of the body, in a second direction perpendicular to the reflective face of the dispersive optical element.
Abstract:
An optical spectrum analyzer includes a multilayer-coating filter for separating a wavelength in the spectrum of an incident input beam, a detector optically coupled to the filter, a voice-coil actuator for rotating the filter in oscillating motion to vary the wavelength received by the detector as a function of time, and an encoder for synchronizing the angular position of the filter with the wavelength received at the detector. The use of the voice-coil actuator makes it possible to achieve significantly greater speeds of operation with a significantly smaller device.
Abstract:
The present invention generally pertains to a system, method and kit for the detection and measurement of spectroscopic properties of light from a sample, or the scalable detection and measurement of spectroscopic properties of light from each sample present among multiple samples, simultaneously, wherein the system comprises: an optical train comprising a dispersing element; and an image sensor. The light detected and measured may comprise light scattered from a sample, emitted as chemiluminescence by a chemical process within a sample, selectively absorbed by a sample, or emitted as fluorescence from a sample following excitation.
Abstract:
A tunable interferometric scanning spectrometer is provided. In one aspect of the disclosure, the interferometric scanning spectrometer splits incoming light beams among different optical paths in the spectrometer, recombines the light beams from the different optical paths to produce combined light beams, detects intensities of the combined light beams across a focal plane (e.g., with a sensor array), and calculates a spectra based on the detected intensities and a filter function that is a function of optical path difference (OPD) between the optical paths. In one aspect, the filter function varies across the focal plane. In another aspect, the spectrometer comprises a rotatable dispersive element (e.g., glass plate) in one the optical paths and/or a moveable mirror in the other optical path. In this aspect, the spectrometer may be adjusted away from zero OPD by rotation of the dispersive element and/or displacement of the mirror.