Abstract:
Disclosed is a micro-lens imaging multi-well test plate which comprises: a transparent plate of 3-5 mm in thickness with one or more trapezoidal wells locating in the middle of the plate, each of the wells is of an underside of 2-4 mm in diameter, 0.2-0.5 mm in thickness, a trapezoidal dip angle of 60-75°, and has a micro-lens which upper half is hemispherical, lower half is a cylinder, with radius of 0.1˜1.0 mm, height of 0.2˜2.5 mm, molded on the bottom of the well. The micro-lens imaging multi-well test plate is made of homogeneous optical transparent materials. When the trapezoidal concave wells of the test plate are filled with fluid to immerse the micro-lens, under parallel light illumination, due to the refraction effect of light, the image of micro-lens is a round one with an outer edge that is a black ring. The outer radius R of the black ring is the radius of the micro-lens, the inner radius r of the black ring is a function of the refractive index n1 of the immersion liquid, the refractive index n2 of the micro-lens and the height h of the micro-lens, so the refractive index of the sample fluid can be determined by monitoring the value of the inner radius r of the black ring with known values of R, n2 and h. By using a multi-well test plate for imaging, the individual refractive indices of different sample fluids in all the wells can be determined simultaneously in one measurement.
Abstract:
A light-emission-side prism accommodates a light-emitting element and is disposed in a light-emission guide hole extending in a light-emission axis direction. A light-reception-side prism accommodates a light-receiving element and is disposed in a light-reception guide hole extending in a light-reception axis direction. The light-emission-side prism has a total-reflection surface that causes light from the light-emitting element to be directed in the light-emission axis direction and a lens surface that causes light emitted from the total-reflection surface to be condensed. The light-reception-side prism includes a lens surface that causes scattered light entering from a smoke monitoring area in the light-reception axis direction to be condensed and a total-reflection surface that causes light condensed by the lens surface to be directed toward the light-receiving element.
Abstract:
Systems and methods that facilitate analysis of superficial tissue based at least in part on a depth-selective fiber optic probe are discussed herein. The depth-selective fiber optic probe can include an illumination fiber for providing light to the superficial tissue, a collection fiber for collected reflected light, a ball lens that couples the fibers, and a protective overtube that houses the ball lens and fibers. The distances between the ball lens and fibers and between the fibers can be optimized based on several factors, such as by minimizing the illumination spot size, maximizing the overlap between the illumination and collection spots, and based on the angle between the illumination and collection beams.
Abstract:
An analytical instrument may have multiple distinct channels. Such may include one or more illumination sources and sensors. Illumination may be delivered to specific locations of a specimen holder, and returned illumination may be delivered to specific locations of a sensor array. Illumination may first pass a specimen, and a mirror or reflector may then return the illumination past the specimen. Optical splitters may be employed to couple pairs of fiber optics proximate a specimen holder. Such channels may further include a plurality of illumination sources positioned on one side of a specimen holder and a plurality of sensors on the other side. The plurality of sensor may capture image of a specimen and a spectrophotometer may concurrently scan the specimen. A plurality of specimens may be imaged and scanned in a single pass of a plurality of passes. Spherical or ball lenses may be placed in an optical path of the illumination to achieve a desired illumination pattern.
Abstract:
An analytical instrument may have multiple distinct channels. Such may include one or more illumination sources and sensors. Illumination may be delivered to specific locations of a specimen holder, and returned illumination may be delivered to specific locations of a sensor array. Illumination may first pass a specimen, and a mirror or reflector may then return the illumination past the specimen. Optical splitters may be employed to couple pairs of fiber optics proximate a specimen holder. Such channels may further include a plurality of illumination sources positioned on one side of a specimen holder and a plurality of sensors on the other side. The plurality of sensor may capture image of a specimen and a spectrophotometer may concurrently scan the specimen. A plurality of specimens may be imaged and scanned in a single pass of a plurality of passes. Spherical or ball lenses may be placed in an optical path of the illumination to achieve a desired illumination pattern.
Abstract:
A multimodal probe system for spectroscopic scanning of tissue for disease diagnosis. The system can use diffuse reflectance spectroscopy, fluorescence spectroscopy and Raman spectroscopy for the detection of cancerous tissue, such as tissue margin assessment.
Abstract:
The present invention relates to methods and apparatus for detecting and measuring the concentration of a substance in a solution, the substance having an absorption at 300 nm or less. The methods and apparatus have particular utility in detecting and measuring the concentration of proteins and nucleic acids.
Abstract:
An inspection area on a semiconductor wafer can be examined using a photonic nanojet. The photonic nanojet, an optical intensity pattern induced at a shadow-side surface of a dielectric microsphere, is generated. The inspection area is scanned with the photonic nanojet. A measurement is obtained of the retroreflected light from the dielectric microsphere as the photonic nanojet scans the inspection area. The existence of a structure in the inspection area is determined with the obtained measurement of the retroreflected light.
Abstract:
A small size turbidity sensor for underwater in-situ measurements in the wide range of turbidity values is disclosed that may be integrated into a housing with other underwater sensors. The turbidity sensor incorporates micro focusing devices and light stop that gives no divergence excitation beam with convergence less than 1.5 degrees and the measuring angle between the optical axis of the incident radiation and mat of the diffused radiation 90 ±2.5 degrees. Another embodiment includes internal and external optical calibrators that allows the sensor to work longer without human intervention.
Abstract:
A laser-induced fluorescence detector comprises a laser beam emitting device, a dichroic mirror to deviate the laser light orthogonally, a lens with a small numerical aperture, a ball lens, a unique cell within a capillary, the cell receiving a solute containing at least one unknown fluorescent substance at the laser wavelength, the same device collecting the fluorescence emitted by the fluorescent substance, with optical filters, a photomultiplier tube, and a computer for displaying results of the analysis. The ball lens converts the laser beam into a very small divergent beam, which allows a high irradiated volume in the capillary cell. The cell employs controlled geometric contours to prevent laminar mixing and turbulence during liquid flow, and the collecting device is a high numerical aperture device, for example, a ball lens.