Abstract:
The present invention relates to a method for analyzing samples comprising spermatozoa, said method comprising the use of a flow-through counting compartment, wherein the time period between the end of loading and closing is carried out in a controlled and specified time period. The present invention further relates to a counting compartment or chamber suitable for said method and to a counting device comprising said counting compartment.
Abstract:
Apparatus and methods are described including placing a sample into a sample carrier that comprises a plurality of regions having upper and lower surfaces, having respective heights that are different from each other, and being configured such that cells form a monolayer, the monolayer within respective regions of the sample carrier having respective, different densities from each other, due to the respective regions of the sample carrier having respective heights that are different from each other. Microscopic images are acquired of each of the plurality of regions. Measurements are performed upon cell types that have a relatively high density upon microscopic images of a region of the sample chamber having a relatively low height, and measurements are performed upon cell types that have a relatively low density upon microscopic images of a region of the sample chamber having a relatively great height. Other applications are also described.
Abstract:
This disclosure is directed to exemplary embodiments of systems, methods, techniques, processes, products and product components that can facilitate users making improved absorbance or fluorescence measurements in the field of spectroscopy with reduced (minimal) sample waste, and increased throughput, particularly in the study of biological sciences. A measuring system is provided having: a base unit with a means for locating a pipette tip; a pipette tip designed to interact with the base unit for purposes of accurate pipette tip positioning; at least one light supplying unit positioned to supply light to a liquid sample in the pipette tip and at least one light collecting unit positioned to collect light from a liquid sample in the pipette tip.
Abstract:
A for traceably determining an unknown optical path length of a sample in an optical measuring device comprises the steps of: providing a drop analyzer connected to a standard spectrophotometer; providing a certified reference material contained in first and second closed high accuracy cuvettes; measuring absorbance of the certified reference material to obtain a first absorbance measurement for the first specified path length; measuring absorbance of the certified reference material for a second path length to obtain a second absorbance measurement; using a dropping device to drop a specified volume of the solvent on an optical surface so that the path length of the specified volume can be determined by reference to the first and second absorbance measurement; and using the dropping device to drop the same volume of sample as the specified volume of solvent on the optical measuring device.
Abstract:
An optical absorption gas analyzer for determining the concentration of a target gas in a sample is disclosed. The analyzer comprises a chamber for containing the sample in use; a radiation source assembly arranged to emit radiation into the chamber; a first radiation detector assembly arranged to detect radiation transmitted along a first optical path through the chamber and a second radiation detector assembly arranged to detect radiation transmitted along a second optical path through the chamber, wherein the length of the second optical path which the sample can intercept is shorter than that of the first optical path. The analyzer further comprises a processor adapted to generate a sensing signal SS based on the detected radiation transmitted along the first optical path and a reference signal SR based on the detected radiation transmitted along the second optical path. The processor determines the concentration of the target gas in the sample based on a comparison of the sensing signal with the reference signal.
Abstract:
The invention relates to a method for monitoring the condition of a medium, based on the transmission/emission of light in a channel, in which a light is conducted through a medium layer defined by a measuring gap in a measuring head pushed in from an opening in the wall of the channel, the intensity of the light, or a variable proportional to it is measured through the medium layer, and the condition of the medium is evaluated, using measuring electronics, from the intensity of the change, according to set criteria. The measurement is performed using a sensor with a compact measuring head, in which the measuring electronics are essentially outside the channel, and in which the light is conducted to the measuring gap and away from the measuring gap by optical-fibre means. In addition, the invention also relates to a corresponding device.
Abstract:
A spectrophotometer (2) comprising a source of radiation (6), preferably optical radiation, disposed to emit radiation at a plurality of wavelengths towards a sample in a sample holder (4) and a detection arrangement 8 for detecting the radiation after its interaction with the sample. The sample holder (4) is adapted to present a plurality of different path lengths for the emitted radiation through the sample. An arithmetic unit (10;10b) is operably connected to receive an intensity dependent output from the detection arrangement (8) and is adapted to store an intensity value of the detected emitted radiation indexed to its wavelength at two or more path lengths of the plurality of different path lengths and to calculate a value dependent on the ratio of the indexed intensity values at each of two path lengths by which an indication of the presence of a substance of interest withiA spectrophotometer (2) comprise a source of radiation (6), preferably optical radiation, disposed to emit radiation at a plurality of wavelengths towards a sample in a sample holder (4) and a detection arrangement 8 for detecting the radiation after its interaction with the sample. The sample holder (4) is adapted to present a plurality of different path lengths for the emitted radiation through the sample. An arithmetic unit (10;10b) is operably connected to receive an intensity dependent output from the detection arrangement (8) and is adapted to store an intensity value of the detected emitted radiation indexed to its wavelength at two or more path lengths of the plurality of different path lengths and to calculate a value dependent on the ratio of the indexed intensity values at each of two path lengths by which an indication of the presence of a substance of interest within the retained sample can be obtained.
Abstract:
In an apparatus and method of noninvasively measuring a concentration of a blood component, the method includes (a) varying a thickness of a body part of a subject, measuring absorption spectrums at different thicknesses of the body part, obtaining a first differential absorption spectrum between the absorption spectrums measured at different thicknesses, actually measuring concentrations of the blood component, and establishing a statistical model using the first differential absorption spectrum and the actually measured concentrations; and (b) estimating the concentration of the blood component using a second differential absorption spectrum obtained with respect to the body part based on the statistical model.
Abstract:
Methods and apparatus for detecting biological activity within a sample are disclosed. The present invention provides a combination of a first and a second infrared light source arranged on the side of a sample vial, and a first and a second narrow-band infrared detector similarly arranged on the side of the vial approximately opposite the sources. The disclosed arrangement cancels the sources of error while measuring the carbon dioxide content of the headspace gas above the sample. In operation, the present invention sequentially measures the photocurrents generated at each detector with no source turned on, with the first source turned on, and with the second source turned on and the first source turned off. The CO.sub.2 absorption coefficient of the vial headspace gas is then calculated based on the photocurrents measured. This present invention allows compensation for source aging, detector aging, and vial wall thickness changes. Moreover, the present invention permits a determination of the absolute absorption coefficient at a selected wavelength, most preferably about 4.26 .mu.m, which is the CO.sub.2 absorption characteristic wavelength. The determination of the absolute CO.sub.2 concentration within the headspace permits the detection of bacterial growth processes. Additionally, the disclosed source/detector combination can be produced at low cost. Thus, in preferred embodiments, the apparatus of the present invention comprises a plurality of vials that are simultaneously monitored by providing each of the plurality of vials with its own source/detector combination and activating and deactivating the sources and detectors using a multiplexer/demultiplexer arrangement.
Abstract:
A method of photometric in vitro determination of the content of an analyte in a sample is disclosed. The sample is located in a measuring chamber which has a radiation path length and has at least one at least partially transparent wall part. The measuring chamber is in optical communication with an optical system adapted for the analyte which includes a radiation source and a radiation detector. The measuring chamber is adjustable in shape which enables the radiation path length across the measuring chamber to be changed. In a first measuring step an unknown first radiation path length across the measuring chamber is set and radiation at at least two wavelengths is transmitted from the radiation source through the measuring chamber and to the radiation detector. In a second step, the measuring chamber is adjusted in shape thereby setting a second unknown path length across the measuring chamber. Radiation at the same wavelengths as during the first step is again transmitted from the radiation source through the measuring chamber and to the radiation detector. The analyte content is then determined on the basis of radiation detected in each of the measuring steps.