Abstract:
A method and system for optimization of an image to be printed on a substrate using optical lithography is disclosed in which a set of charged particle beam shots, some of which overlap, is determined so as to form a target pattern on a surface such as a reticle. The charged particle beam shots are simulated to determine the pattern that would be formed on the surface. Next, a substrate image is calculated from the simulated surface pattern. One or more shots in the set of shots are then modified to improve the calculated substrate image.
Abstract:
A method for selectively exposing a resist layer using a charged particle beam to form a desired pattern. The method includes the steps of repeatedly exposing a basic pattern segment using a charged particle beam so as to expose a pattern within a first predetermined region of the resist layer by a main exposure. The pattern within the first predetermined region is a multiple repetition of the basic pattern segment. A second predetermined region of the layer is exposed by auxiliary exposure at an intensity level lower than that of the main exposure. The second predetermined region excludes the central portions of the first predetermined region and includes a region in which a proximity effect occurs due to the main exposure.
Abstract:
In a system for continuously exposing desired patterns and their backgrounds on the surface of a target, a first electron beam emitted from a first electron gun is converged by condenser lenses and an objective lens to be focused on the surface of the target. A second electron beam emitted from a second electron gun is defocused at the target surface by a condenser lens and a deflecting coil. A deflector selects the first or second electron beams. While the target surface is being scanned with the selected electron beam, the beam is deflected by a scanning deflector. In delineating a pattern, the target surface is scanned with the first electron beam. In delineating a background, on the other hand, the target surface is scanned with the second electron beam.
Abstract:
In electron beam lithography, a beam of incident electrons exposes a preselected circuit pattern in a thin resist layer deposited on top of a substrate to be etched. Some of the electrons scatter from the substrate back into the resist layer producing an undesired exposure which produces variable resolution of features. In accordance with the disclosed technique, the region of the resist which is complementary to the desired circuit pattern is also exposed by an electron beam which has been adjusted to produce an exposure approximating that due to backscattering. This additional exposure removes the spatial variability in resolution attainable by the electron beam lithography.
Abstract:
Methods for exposing a desired shape in an area on a surface using a charged particle beam system include determining a local pattern density for the area of the desired shape based on an original set of exposure information. A backscatter for a sub area is calculated, based on the original set of exposure information. Dosage for at least one pixel in a plurality of pixels in the sub area is increased, in a location where the backscatter of the sub area is below a pre-determined threshold, thereby increasing the backscatter of the sub area. A pre-PEC maximum dose is determined for the local pattern density, based on a pre-determined target post-PEC maximum dose. The original set of exposure information is modified with the pre-PEC maximum dose and the increased dosage of the at least one pixel in the sub area to create a modified set of exposure information.
Abstract:
A multi charged particle beam writing method includes performing ON/OFF switching of a beam by an individual blanking system for the beam concerned, for each beam in multi-beams of charged particle beam, with respect to each time irradiation of irradiation of a plurality of times, by using a plurality of individual blanking systems that respectively perform beam ON/OFF control of a corresponding beam in the multi-beams, and performing blanking control, in addition to the performing ON/OFF switching of the beam for the each beam by the individual blanking system, with respect to the each time irradiation of the irradiation of the plurality of times, so that the beam is in an ON state during an irradiation time corresponding to irradiation concerned, by using a common blanking system that collectively performs beam ON/OFF control for a whole of the multi-beams.
Abstract:
A method and system for fracturing or mask data preparation or optical proximity correction or proximity effect correction or mask process correction is disclosed in which a set of shaped beam shots is determined that is capable of forming a pattern on a surface, where the set of shots provides different dosages to different parts of the pattern, and where the dose margin from the set of shots is calculated. A method for forming patterns on a surface is also disclosed.
Abstract:
A multi charged particle beam writing method includes performing ON/OFF switching of a beam by an individual blanking system for the beam concerned, for each beam in multi-beams of charged particle beam, with respect to each time irradiation of irradiation of a plurality of times, by using a plurality of individual blanking systems that respectively perform beam ON/OFF control of a corresponding beam in the multi-beams, and performing blanking control, in addition to the performing ON/OFF switching of the beam for the each beam by the individual blanking system, with respect to the each time irradiation of the irradiation of the plurality of times, so that the beam is in an ON state during an irradiation time corresponding to irradiation concerned, by using a common blanking system that collectively performs beam ON/OFF control for a whole of the multi-beams.
Abstract:
A charged particle beam writing apparatus includes a storage unit to store each pattern data of plural figure patterns arranged in each of plural small regions made by virtually dividing a writing region of a target workpiece to be written on which resist being coated. The charged particle beam writing apparatus further including an assignment unit to assign each pattern data of each figure pattern to be arranged in each of the plural small regions concerned, and a writing unit to write, for each of plural groups, each figure pattern in each of the plural small regions concerned by using a charged particle beam.
Abstract:
A method and system for fracturing or mask data preparation are presented in which overlapping shots are generated to increase dosage in selected portions of a pattern, thus improving the fidelity and/or the critical dimension variation of the transferred pattern. In various embodiments, the improvements may affect the ends of paths or lines, or square or nearly-square patterns. Simulation is used to determine the pattern that will be produced on the surface.