Abstract:
A digital processor is provided having an instruction set with a complex exponential function. The digital processor evaluates a complex exponential function for an input value, x, by obtaining a complex exponential software instruction having the input value, x, as an input; and in response to the complex exponential software instruction: invoking at least one complex exponential functional unit that implements complex exponential software instructions to apply the complex exponential function to the input value, x; and generating an output corresponding to the complex exponential of the input value, x. A complex exponential function for an input value, x, can be evaluated by wrapping the input value to maintain a given range; computing a coarse approximation angle using a look-up table; scaling the coarse approximation angle to obtain an angle from 0 to θ; and computing a fine corrective value using a polynomial approximation.
Abstract:
This disclosure provides a circuit for linearizing an output signal Sout produced by a non-linear component based on an input signal x(n). The circuit comprises a primary pre-distorter module configured to generate a pre-distorted signal y(n) based on the input signal x(n) and a primary pre-distortion function parameterized by a pre-distortion parameter λ and to feed the pre-distorted signal y(n) to the non-linear component. The circuit comprises an estimation module. The estimation module is configured to receive samples z(n) of the output signal Sout, and to determine the pre-distortion parameter λ. The estimation module comprises a secondary pre-distorter module configured to generate a secondary pre-distorter output signal r(n) based on a secondary pre-distortion function and the samples z(n) of the output signal Sout. The secondary pre-distorter module is configured to determine the pre-distortion parameter λ based on a previously determined pre-distortion parameter stored on a data storage, the secondary pre-distorter output signal r(n) and the pre-distorted signal y(n) provided by the primary pre-distorted module. The determining comprises correlating the input signal x(n) with an error signal between the pre-distorted signal y(n) and the secondary pre-distorter output signal r(n).
Abstract:
A power amplifier bias circuit having high dynamic range and low memory is disclosed. In an exemplary embodiment, an apparatus includes an output stage configured to generate a biased RF signal based on a first DC signal and a filtered signal. The apparatus also includes a low pass filter configured to filter the biased RF signal to generate the filtered signal.
Abstract:
Methods and apparatus are provided for direct synthesis of RF signals using maximum likelihood sequence estimation. An RF digital RF input signal is synthesized by performing maximum likelihood sequence estimation on the digital RF input signal to produce a digital stream, such that after filtering by a prototype filter the produced digital stream produces a substantially minimum error. The substantially minimum error comprises a difference between a digital output of the prototype filter and the digital RF input signal. The digital stream is substantially equal to the input digital RF signal. The digital stream can be applied to an analog restitution filter, and the output of the analog restitution filter comprises an analog RF signal that approximates the digital RF input signal.
Abstract:
A method, apparatus, and computer program for modeling mathematically an effect of a plurality of factors on signal distortion caused by a non-linear amplifier are provided. First, there is computed a global model which incorporates a combined effect of the plurality of factors on signal distortion caused by the non-linear amplifier. Before applying the pre-distorted transmission signal to the non-linear amplifier, a transmission signal is pre-distorted with coefficients derived from the global model thus compensating for the signal distortion caused by the non-linear amplifier.
Abstract:
Maximum likelihood bit-stream generation and detection techniques are provided using the M-algorithm and Infinite Impulse Response (IIR) filtering. The M-Algorithm is applied to a target input signal X to perform Maximum Likelihood Sequence Estimation on the target input signal X to produce a digital bit stream B, such that after filtering by an IIR filter, the produced digital stream Y produces an error signal satisfying one or more predefined requirements. The predefined requirements comprise, for example, a substantially minimum error. In an exemplary bit detection implementation, the target input signal X comprises an observed analog signal and the produced digital stream Y comprises a digitized output of a receive channel corresponding to a transmitted bit stream. In an exemplary bit stream generation implementation, the target input signal X comprises a desired transmit signal and the produced digital stream Y comprises an estimate of the desired transmit signal.
Abstract:
An apparatus relates generally to multi-path digital predistortion. In this apparatus, a single-band digital predistorter engine has first and second sample paths. An input stage is coupled to receive input samples and configured to separate them into first samples and second samples. The input stage provides first and second magnitudes for the first and second samples, respectively. A first set of digital predistorters receives the first samples, the first magnitudes and the second magnitudes. A second set of digital predistorters receives the second samples, the second magnitudes and the first magnitudes. An output stage is coupled to receive predistorted outputs from the first set of digital predistorters and the second set of digital predistorters and is configured to provide a digital predistorted composite signal from the first set of digital predistorters and the second set of digital predistorters.
Abstract:
The augmented twin nonlinear two-box modeling and predistortion method for power amplifiers and transmitters provides power amplifier distortion modeling and predistortion linearization. A memoryless nonlinearity is combined with a memory polynomial function that includes cross-terms. The method can utilize an augmented forward twin-nonlinear two-box model, an augmented reverse twin-nonlinear two-box model, or alternatively, an augmented parallel twin-nonlinear two-box model. The present two-box models are validated in modeling and predistortion applications. Measurement results demonstrate the superiority of the present two-box models with respect to conventional state of the art models. The present two-box models lead to better accuracy with reduced complexity.
Abstract:
Various digital pre-distortion systems for use in transmitters are disclosed. The digital pre-distortion system comprises an observing path, which performs either undersampling or radio frequency sampling of the output of a power amplifier. Undersampling may be performed at a rate, which causes aliasing to occur in the undersampled frequency domain. Both undersampling and radio frequency sampling reduces the complexity of the digital pre-distortion system by removing any down mixing modules or anti-aliasing modules, while maintaining reasonable performance of the digital pre-distortion systems.
Abstract:
A RF-digital hybrid mode power amplifier system for achieving high efficiency and high linearity in wideband communication systems is disclosed. The present invention is based on the method of adaptive digital predistortion to linearize a power amplifier in the RF domain. The present disclosure enables a power amplifier system to be field reconfigurable and support multi-modulation schemes (modulation agnostic), multi-carriers and multi-channels. As a result, the digital hybrid mode power amplifier system is particularly suitable for wireless transmission systems, such as base-stations, repeaters, and indoor signal coverage systems, where baseband I-Q signal information is not readily available.