Abstract:
An improved thermionic generator constructed using microenginerring techniques is described. This device is easy to construct in large numbers, efficient, and inexpensive. A preferred embodiment uses micromachined silicon to produce a thermionic converter cell. These may be joined together in large arrays to form a thermionic generator.
Abstract:
The present invention provides an alkali metal thermal to electric conversion (AMTEC) cell of the type employing an alkali metal flowing between a high-pressure zone and low-pressure zone in the cell through a solid electrolyte structure. The cell preferably includes a condenser communicating with the low-pressure zone for condensing alkali metal vapor migrating through the low-pressure zone from the solid electrolyte structure. An artery is coupled to the condenser for directing condensed alkali metal from the condenser toward a hot end of the cell. An evaporator for evaporating the condensed alkali metal is coupled to the artery and communicates with the high-pressure zone. A heat shield is disposed in the low pressure zone of the cell for reducing the radiative heat transfer between the hot end of the cell and the cold end of the cell. The heat shield preferably includes a first end having a known area transitioning to a second end encompassing a smaller area than the first end.
Abstract:
A collector element for a thermionic electric converter that reduces electron scatter and improves conversion efficiency is provided. The collector element includes an outer casing and a highly charged member surrounded by insulating layers that minimize loss of static charge on the highly charged member. The collector element additionally includes a conductive layer of copper sulfate gel impregnated with copper wool fibers. Copper sulfate gel minimizes electron scatter, while providing advantageous electrical properties. The copper wool fibers are in electrical contact with a plurality of ancillary buses which transmit electrical energy to a main bus that provides the electrical energy collected to an external circuit. The main bus is also in electrical contact with the conductive layer.
Abstract:
A high voltage multitube alkali metal thermal electric convertor having a plurality of closely packed tubular cells disposed in a tube sheet in a vessel and electrically connected in series, the tube sheet dividing the vessel into a high pressure high temperature portion having a wick and heater disposed therein and a low pressure low temperature portion having a wick disposed in a condenser from which heat is removed; a pump for transferring liquid metal therebetween and a tab on a wick disposed in the tubular cell to remove excess liquid metal and prevent shorting between the cells.
Abstract:
A thermochemical magnetic generator system utilizes a gas, preferably hydrogen, and a material, such as LaCo.sub.5, which varies in magnetization upon addition of the gas to the material to generate electricity from a magnetic circuit which includes the magnetizable material in the circuit. When the gas partial pressure is reduced or heat is applied to the material which has combined with the gas, then the gas is driven off in a thermochemical reaction which reverses the magnetization of the system. In particular, the addition of hydrogen gas to LaCo.sub.5 reduces the magnetization and its removal from the material increases the magnetization. Rapid reversal of the pressure cycle or heating and cooling cycles with a plurality of chambers through which the gas is admitted and exhausted reversibly can be used as a source of electricity.
Abstract:
This invention is concerned with improving the efficiency of thermionic energy converters. The invention is particularly directed to the reduction of plasma losses in these converters.This beneficial technical effect is achieved by internal distribution of tiny shorted cesium diodes driven by the thermal gradient between the primary emitter (10) and the collector (12). Specifically, the tiny, shorted diode distribution (14) comprises protrusions of the emitter material (16) from the main emitter face (18) which contact the main collector face (22) thermally but not electrically. The main collector ends (20) of the protrusions are separated from the main collector by a thin layer of insulation (24), such as aluminum oxide.The diode effect will increase with the use of metals that adsorb cesium less readily for the main emitter ends of the tiny protrusions and metals that adsorb cesium more readily for the main collector ends of the protrusions. By way of example, the main emitter can be made of rhenium or irridium; the main emitter ends of the protrusions can be made of tantalum or niobium; and the main collector ends of the protrusions can be made of platinum or irridium.The shorted tiny diode distribution augments cesium ionization through internal thermal effects only within the main diode. No electrical inputs are required. This ionization enhancement by the distribution of the tiny shorted diodes not only reduces the plasma voltage drop but also increases the power output and efficiency of the overall thermionic energy converter.
Abstract:
Apparatus is disclosed for generating high density pulses of electrons thermionically. The apparatus includes a metallic target maintained within a low pressure cesium vapor atmosphere. A laser rapidly heats the cesiated target surface to a high temperature in a time short compared with the residence time of cesium atoms adsorbed on the target surface. This rapid surface heating in combination with the adsorbed cesium atoms emits copious quantities of electrons forming a high current density pulse.
Abstract:
A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The EMF generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.
Abstract:
A solar radiant energy concentrating system for concentrating solar radiation on a radiant to electric power thermionic conversion transducer. The radiated energy concentration system utilizes multiple reflector units that collectively together or selectively less than all reflectors as an intensity control are settable to reflect solar radiation onto a multi-surfaced concentrator down onto a focal area encompassing the target area for reflection from the concentrator to the transducer input. The energy concentration is varied in the ratio range of from 20,000 to 1 up to 250,000 to 1. Reflector units are set to compensate for the constantly varying declination angle of the earth toward the sun, step tracks the sun compensating for daily rotation of the earth West to East on its axis up to a full 360.degree. depending on latitude North or South of the equator. The concentrator is generally circular in shape, made up of a series of circular bands with the concentrator stationary and situted such that one or more of the reflector devices can be appropriately aligned at all times to reflect the desired greatest amount of solar energy onto the concentrator. The circular bands are concaved inward and each set at an angle in reference to a flat-face surface to reflect and concentrate the solar rays' input between the inner and outer edges of a circular band to a prescribed facal area. The transducer is also mounted in stationary relation to the concentrator such as to avoid flexing of electrical power leads.
Abstract:
A radiant energy to electrical power thermionic conversion system using a transducer structure with very closely spaced cathode and anode elements in a vacuum to minimize space charge buildup and to optimize cross transfer of electrons from cathode to anode. The materials chosen are for a high work function high melt temperature cathode, tungsten for example with a work function of 4.52 volts, and an anode with a relatively low work function, typically a silver-oxide substrate with a coating of cesium as an anode face deposited on a copper heat sink conductor yielding, with the anode face, a work function approximating 0.75 volts.