Abstract:
An electrolytic ionized water (EIW) producing apparatus comprises an anode, a cathode, an electrolyzer which includes an anode chamber, a cathode chamber and an intermediate chamber, inlet lines for supplying an influent water to the three chambers, and outlet lines for discharging effluent water from the chambers. Further, an acidic electrolyte supplying unit is connected to the outlet line from the anode chamber, and an alkaline electrolyte supplying unit is connected to the outlet line from the cathode chamber. The electrolyte supplying units can selectively control at least the dosage level of elelctrolyte(s) to be supplied, the composition and concentration of the electrolyte(s) or pH of EIW after the addition of the electrolyte(s).
Abstract:
A positive electrode made of titanium having its surface electrolytically plated with platinum is disposed at the central position of an electrolytic ionized water producer. A cylindrical anion membrane is annularly arranged spaced from the positive electrode, a cylindrical cation membrane is annularly arranged spaced from the anion membrane, and a cylindrical negative electrode is annularly arranged spaced from the cation membrane. The opposite ends of the positive electrode, the anion membrane, the cation membrane and the negative electrode are watertightly closed with a base cover and a top cover, and a cylindrical first space is formed inside of the anion membrane. An annular second space is defined between the anion membrane and the cation membrane and an annular third space is defined between the cation membrane and the negative electrode. Water is introduced into the second space. Acidic ionized water permeates through the cation membrane to reach the first space where the positive electrode is located, and alkaline ionized water permeates through the cation membrane to reach the third space where the negative electrode is located. Acidic ionized water and alkaline ionized water are separately taken from the electrolytic ionized water producer.
Abstract:
In an electrolytic ionized water (EIW) producing apparatus, a three-chamber electrolyzer includes an anode chamber, a cathode chamber and an intermediate chamber. An influent such as deionized water is supplied to these chamber via inlet lines. Further an electrolyte supplying units are connected to the inlet lines of the anode chamber and the inlet line of the cathode chamber.
Abstract:
A water purifier comprising an electrolytic cell housed in an enclosure and an attaching apparatus. The enclosure attaches over an outlet fitting of a water circulation line in a swimming pool by the attaching apparatus. The attaching apparatus and the enclosure define apertures and outlet openings, respectively, having increasing areas in the direction of the water flow. This configuration increases flow rates through the apertures and outlet openings; the increased flow rates break off scale formations extending into the center of the apertures and outlet openings and thereby prevent scale from clogging the purifier. The attaching apparatus also can be coupled directly to the water circulation line and can be adjusted to accommodate fittings and circulation lines of various sizes.
Abstract:
The method for producing electrolyzed water includes the step of applying a voltage to electrodes disposed in an electrolytic cell containing therein pure water including electrolyte therein. A strength of an electric field generated by applying a voltage to the electrodes is controlled to be variable by means of various techniques. The method makes it possible to produce electrolyzed water with a smaller amount of energy than prior methods.
Abstract:
The present invention provides an ionized water generating device enabling decreased manufacturing costs together with facilitating its mass production. Therefore, in the ionized water generating device generating ionized water by introducing tap water into a purifying block and an electrolyzing block installed in said device through a faucet, the device is characterized in that water channels connecting each of the functioning blocks are provided in an intermediate water channel block which is put together in one piece with a pair of plastic resin panels, and one of the panels is provided with a plurality of independent water passage respectively surrounded by shallow V-shaped grooves, and the other panel is provided with a plurality of V-shaped projections engaging with each of the V-shaped grooves to prevent leakage of water.
Abstract:
A water electrolyzer for electrolyzing water to produce and recover acidic and/or alkaline water. The electrolyzer is of the membraneless laminar-flow type which is designed to electrolyze water without placing a membrane between the electrodes. To this end, the anode and cathode are arranged closely with one another with a very small spacing (generally less than 1 mm) to establish a laminar flow in a narrow flow path. The anode is provided with a slit-shaped aperture for separating a thin layer of acidic water flowing along the anode surface. This aperture is situated sufficiently upstream of the downstream end of the flow path to ensure that the layer of acidic water is separated away from the remainder of the laminar flow while the laminar flow is sustained in the flow path. Accordingly, formation of turbulence at a point of acidic water separation is minimized so that highly acidic water can be recovered.
Abstract:
A system for reducing biological organisms in a liquid effluent to non-viable organic molecules that includes: a stunning chamber that applies a voltage potential across biological organisms to break cell membranes and disable the defense mechanisms of vital organisms to ultraviolet radiation; a cavitation chamber to physically destroy any remaining membranes of biologicals in the effluent that may play host to vital organisms or allow such to hide therein, the action of the stunning and cavitation chambers releasing interferons; and a molecularly implanted stimulated emitter (MISE) chamber in which high levels of ultraviolet radiation are applied to virions and spores that remain at frequencies that are readily absorbed and operate to disassociate any viable DNA and RNA strands remaining, to thereby cause "death". Prior to the stunning chamber, preferably the effluent has any large solids therein, settled, floated or filtered out. When potable water is to be produced, heavy metals and other common inorganic contaminants are also removed. The resulting effluent is pulsed through the stunning, cavitation, and MISE chambers to gain maximum effect thereof. Once the DNA and RNA strands have been disassociated in the MISE chamber, the environment of the downstream flow is controlled to prevent reassociation of organic molecules into viable DNA or RNA strands by either diluting the output of the MISE chamber to such an extent that organic molecules are unlikely to recombine, or when drinking water is to be produced, by filtering the organic filtering the organic molecules out for cosmetic purposes.
Abstract:
This invention provides an electrochemical water treatment device for producing hydroxyl free radicals and decomposing by oxidation chemical substances dissolved in water. It utilizes a novel electrode which is capable of operation at sufficiently positive anodic potential to produce hydroxyl radicals.
Abstract:
An apparatus for electrical treatment of water can be used for purifying and disinfecting potable water, and also for producing detergent and disinfecting solutions, and comprises at least one electrochemical cell made up of an upright cylindrical electrode and a rod electrode of a variable cross-section mounted coaxially in dielectric sleeves, an ultrafiltration diaphragm made from ceramics based on zirconium oxide and coaxially mounted in the sleeves between the electrodes, the geometrical dimensions of the cell meet some definite relationships. The system of openings in the electrodes and ducts in the sleeves provides for the optimal hydraulic characteristics of the cell. The sleeves and cylindrical electrode have the same external diameter and the cells are specially secured by means of gaskets in the upper and lower headers of a dielectric material with cylindrical sockets in each and supply and discharge ducts. The headers have several sockets each or are made as a built-up structure composed of units having one socket each, and are provided with means for sealing and bracing the structure, and the cells accommodated in the sockets are hydraulically connected in parallel and electrically connected in parallel and series-parallel. The apparatus can also comprise flow rate control devices adapted to meter a reagent and mounted at the water supply line, containers with a catalyst and a hydraulic connection. The apparatus permits of reducing the electric power consumption, simplifying the design, reducing labour expenditures in assembly and disassembly of the apparatus, and also makes it possible to widen the functional potentialities due to simplifying and unifying the hydraulic system of the apparatus.