Abstract:
Safe filling is provided by a housing (8) controlling the pump (6) of the mobile tank (1) receiving, via a secondary hose (10), the pressure prevailing in the container (2) to be filled, a programmable logic enabling the pump to operate when the pressure measured in the container is within a predetermined range, adaptable according to the type of container. The invention is applicable in particular to gas containers.
Abstract:
A storage tank defines a cryogen space for storing a cryogenic liquid. The storage tank comprises a combined fill and vent assembly, which comprises a conduit having a first end with an opening disposed within an upper part of the cryogen space, and a second end outside of the cryogen space that is connected to a receptacle, to which a re-filling nozzle can be attached. A check valve disposed in the conduit allows flow only in the direction of filling the cryogen space with cryogenic liquid from the receptacle. A by-pass line is provided around the check valve with a valve disposed in the by-pass line that is operable to open or close to control flow through the by-pass line. The method comprises attaching a re-filling nozzle to the receptacle and opening the by-pass valve to vent vapor from the cryogen space to reduce vapor pressure therein and to cool the conduit, receptacle, re-filling nozzle, and fill line. After venting the storage tank, the by-pass valve is closed, and the storage tank can be re-filled through the receptacle and conduit.
Abstract:
These inventions related to systems and methods for producing, shipping, distributing, and storing hydrogen. In one embodiment, a hydrogen production and storage system includes a plurality of wind turbines for generating electrical power; a power distribution control system for distributing, and converting the electrical power from the wind turbines, a water desalination and/or purification unit which receives and purifies seawater, and an electrolyzer unit that receive electrical power from the power distribution system and purified water from the desalination units and thereby converts the water into hydrogen and oxygen. After its production, hydrogen is stored, transported, and distributed in accordance with various embodiments.
Abstract:
A cryogenic storage tank comprises a partition that divides a cryogen space into a main storage space and an auxiliary space. A valve disposed inside the cryogen space is associated with a first fluid passage through the partition. The valve comprises a valve member that is actuatable by fluid forces within the cryogen space. A second fluid passage through the partition comprises a restricted flow area that is dimensioned to have a cross-sectional flow area that is smaller than that of a fill conduit such that there is a detectable increase in back-pressure when the main storage space is filled with liquefied gas.
Abstract:
A method of making a cylindrical pressure vessel (11) with a large diameter port in its sidewall includes the step of providing a mandrel (23) of desired diameter and filament winding upon the same. After winding one overall innermost layer, an annular reinforcement belt (16) is helically wound atop a defined region using a band (60) of resin impregnated parallel strands (39) under tension. The annular belt (16) is then itself helically overwound with the resin impregnated parallel strands of filamentary material under tension to provide two complete outer layers. After curing and removal from the mandrel (23) at least one aperture (71) is cut in the sidewall within the reinforcement belt (16) and a side port fitting (75) is installed in the aperture (71).
Abstract:
A cryogenic container includes an inner vessel for containing a cryogenic fluid, and an outer vessel for insulating the cryogenic fluid from the environment. The inner vessel includes a superconductive layer formed of a material having superconducting properties at the temperature of the cryogenic fluid. The superconductive layer forms a magnetic field around the cryogenic container, that repels electromagnetic energy, including thermal energy from the environment, keeping the cryogenic fluid at low temperatures. The cryogenic container has a portability and a volume that permits its' use in applications from handheld electronics to vehicles such as alternative fueled vehicles (AFVs). A SMES storage system includes the cryogenic container, and a SMES magnet suspended within the cryogenic fluid. The SMES storage system can also include a recharger and a cryocooler configured to recharge the cryogenic container with the cryogenic fluid.
Abstract:
A mounting assembly for holding and moving a propane cylinder between a first operational position and a second lower loading/unloading position with respect to a support structure of a forklift is provided. The mounting assembly includes a base member adapted for connection to the forklift support structure, a cradle for supporting the cylinder between the first and second positions, and first and second pivot arms having a first end pivotally connected to the base member and a second end pivotally connected to the cradle. In the first position, the cradle is in a generally horizontal orientation. In the second position, the cradle is in a generally vertical orientation. Angular movement of the first and second pivot arms causes rotation of the cradle between the generally horizontal and generally vertical orientations.
Abstract:
A cryogenic fluid tank comprising an outer envelope (2) and an inner envelope (1), wherein the space between said envelopes is occupied by a multilayered insulation structure (3) wherein the inner envelope (1) is supported on a point of articulation (A) formed by a support structure (6) coupled to the outer envelope (2) and extending into the latter, wherein the point of articulation is located above the center of gravity (G) of the inner envelope. Applications: cryogenic fuel tanks in motor vehicles.
Abstract:
The present invention provides cryostat comprising a cryogen vessel 2 suspended within an outer vacuum container 4 by an arrangement comprising: at least one housing 20 mounted on an exterior surface of the outer vacuum container and arranged to function as a floor mounting foot, for supporting weight of the cryogen vessel and the outer vacuum container; at least two mounting points 26, 30 mounted within the housing(s); and at least two suspension elements 22, 23, being an upper suspension element 22 and a lower suspension element 23, each of the at least two suspension elements 22, 23 extending through a hole 32 in the surface of the outer vacuum container between the respective mounting point 26; 30 and a respective point on the cryogen vessel.
Abstract:
An LNG full containment system is provided. The LNG system generally comprises a primary container, and a secondary container positioned around the primary container. The secondary container generally comprises a first end wall, a second end wall, and at least two side walls. At least one of the walls is fabricated from a plurality of prefabricated wall panels. Each of the wall panels is fabricated from a combination of concrete and steel. The wall panels are preferably prefabricated offsite, and then transported to the construction site where they are adjoined together in end-to-end fashion to form walls. A method for constructing a full containment LNG system is also provided. In one embodiment, walls and a roof for a secondary container are assembled, but leaving an end open. At least one primary tank is brought into the secondary container. A second end wall is then erected to form the enclosure for the secondary container.