Abstract:
A door system is driven by a motor. The door wings of this door system are guided by rollers (27) on a rail (10) secured in a door frame construction. The driving motor (30) of each door wing is secured onto an operating mechanism receiving the roller (27). It acts on the roller (27) in a positive manner or by friction-grip. The door system with the driving motor (30) fixedly arranged on the door wing and moving jointly with the door wing has a simpler structure as compared to known door systems, and can be manufactured and serviced at favorable cost.
Abstract:
When a window lowering switch is operated, a car voltage is supplied to a window lowering relay to drive the window lowering relay, and the window lowering relay is inhibited from being driven by supplying an inverse voltage to a window elevating relay. Thus, there is provided a waterproof power window device in which a window may be opened by operating the window lowering switch (3) even when a car falls in the water and is laid under water.
Abstract:
A portable remotely controlled automatic door closing apparatus enables the door of a room or office to be closed from a remote location within the room or office by transmitting a signal to an actuator which exerts a force on the door to move it from an opened position to a closed position. The apparatus comprises a battery or AC powered motor which moves a lever arm into engagement with the door to rotate the door about its hinges from the open to the closed position. The apparatus is free standing and immobilized on the floor in a non-connected relationship thereto between an apparatus wall and the door in its open position. The apparatus is immobilized to prevent slipping by a floor-engaging mechanism, such as an adhesive, an anti-skid rubber material, or suction cups, or carpet engaging projections.
Abstract:
An actuator assembly for a powered sliding door system for an automotive vehicle. The actuator assembly includes a housing having a cavity and a first cable reel and a second cable reel disposed in the cavity. The first cable reel is operatively connected to one end of a cable and the second cable reel is operatively connected to another end of the cable. The actuator assembly includes a transmission assembly being disposed in the cavity and operatively connected to either the first cable reel or the second cable reel. The actuator assembly includes a motor operatively connected to the transmission assembly for rotating the first cable reel and the second cable reel. The actuator assembly further includes a motor bracket operatively connected to the transmission assembly and enclosing the motor. The motor bracket is adjustable relative to the housing to form either a right-hand assembly, left-hand assembly or intermediate assembly for a right-hand and left-hand sliding door for a powered sliding door system.
Abstract:
A power drive system is adapted for a sliding door mounted on at least one side of a vehicle for sliding movement forwardly and rearwardly of the vehicle. The system includes a reversible motor. A bracket is guided within a guide along a fixed path between the opened and closed positions of the door. An elongated drive member is slidably disposed within the guide and connected to the bracket at one end for driving the bracket along the fixed path. A translator mechanism operably engages with the drive member for powering movement of the door. The translator mechanism can include a rotatable hub, operably engageable with the drive member, a gear transmission for driving the hub, and a clutch mechanism for connecting the motor to the transmission. The translator mechanism preferably has sufficient power to pull the sliding door into a primary latch position with respect to the corresponding portions of a latch mechanism attached to the door and frame defining the door opening. A power striker moves the door into and out of sealing engagement with the frame. A lock mechanism selectively maintains the latch in a locked position. At least one sensor provides an input signal to a control system corresponding to movement of the door, position of the lock mechanism, and position of the power striker for controlling the door drive unit, power striker drive unit, and lock mechanism drive unit in accordance with a program stored in memory.
Abstract:
An operating system for controllably moving in upward and downward directions a sectional door (D) in relation to a door frame (12) having a pair of jambs (13, 14) and an interconnecting header (15), including a counterbalancing system (30) having a drive tube (31) interconnected with the sectional door proximate the ends thereof, a motorized operator (10) mounted adjacent to the drive tube and between the ends of the sectional door, and a drive train (70) interconnecting the drive tube and the motorized operator for selectively driving the sectional door in upward and downward directions. The operator includes a motor (40) for selectively rotating a drive shaft (60) in two directions, a drive wheel (80) on the drive shaft for rotating the drive train in one direction when the motor rotates the drive shaft in one direction, and a coupler on the drive shaft rotating the drive wheel when located in a first position and directly engaging and rotating the drive gear in the other direction when located in a second position.
Abstract:
A method for selective alteration and control of door movement modes utilizing an apparatus that is primarily non-hydraulic and incorporated with a known mechanism which is functional independently from the apparatus in one mode of operation and which includes a piston for controlling door closing characteristics by selected fluid flow within the mechanism. The apparatus includes a motor driven lead screw having a linearly movable shuttle unit mounted thereon, the shuttle unit being positioned relative to the piston of the mechanism to accommodate nonattached contact with the piston to urge the piston, when the shuttle unit is moved, in a direction that will at least provide selective assistance with door opening in another mode of operation. Operation of the apparatus is controlled by programming of a related controller including non-volatile memory.
Abstract:
A powered operator for sliding plug doors mounted on a movable carriage mounted overhead of an opening in the side wall of a transit vehicle, said doors including a single electric prime mover driving dual helical drives, each operating a door hanger attached to a single door panel over and away from said opening and for moving said carriage out of said side wall pocket. Door hangers used provide controlled deflection of door panels when in a fully open position. Drive linkages lock door panels when in a plugged position. The operator also provides guidance for the lower edge of said door panels during plugging and unplugging operations. Control elements and a central controller provides sequential door panel movement into and out of a pocket in the transit car side wall.
Abstract:
A mechanism for the powered opening and closing of household panels such as windows and doors comprises a worm drive screw, small enough to be mounted within and along the upper track of a sliding panel. A nut threaded on the drive screw moves axially along the screw when the screw is rotated. Motion of the nut is transmitted to the panel by means of a coupling bolt, slidingly mounted within a cavity in the top of the panel. The bolt slides up to engage the nut for powered operation, and slides down to disengage from the nut during manual operation. The position of the bolt can be secured through locking means. A resilient, dielectric transmission accouplement between the drive screw and the motor provides electrical and vibrational isolation, and scalability. A second extendible bolt mounted on an opposite end of the frame hinders pitch deflection of the panel during powered operation. Worm gearing and a solenoid based brake locks the motor and the position of the nut when no power is applied.
Abstract:
An assembly for opening and closing a window sash from and against a window frame including a motor mounted to a window sash and having an output drive shaft, an operator arm having one portion pivotally connected to the sash and a second portion operably connected to the frame, and a drive train operably connecting the motor drive shaft to the output arm for controlling pivotal movement thereof in relation to the sash. A clutch mechanism permits the operator arm to be selectively disconnected from the drive train to allow the sash to be manually opened. A housing, disposable in a cavity defined in a generally rectangular box shape on a sash side, encloses the motor, drive train, and clutch mechanism. The housing has finger-jointed ends which are adhesively bonded to matching finger-joints formed on opposite sides of the sash cavity.