Abstract:
The present invention provides an improved catalytic fast pyrolysis process for increased yield of useful and desirable products, while greatly reducing or eliminating fouling of various critical process lines which are likely to transfer heavy hydrocarbons, aromatics and oxygenates. The process comprises steps including feeding a fluid solvent stream having a Snyder Polarity Index of at least 2.4 to one or more of i) the raw fluid product stream from a catalytic fast pyrolysis process fluidized bed reactor to a first separation system, ii) the fluid product stream from the first separation system to a quench vapor/liquid separation system, iii) the vapor phase stream from the quench vapor/liquid separation system to a product recovery system, and, optionally, to the spent catalyst steam stripping system upstream of the catalyst regeneration system.
Abstract:
Methods of separating and utilizing char produced by the catalytic fast pyrolysis of biomass are described. In a preferred method, a portion of the char from a catalytic pyrolysis reactor is recovered and treated and combusted to provide heat to the catalytic pyrolysis reactor. A novel char and methods of amending soil with a char composition are also described.
Abstract:
Biomass is converted to a fluid hydrocarbon product comprising p-xylene by reaction over a zeolite catalyst. An iron-modified zeolite catalyst having a siliceous coating and methods of making the catalyst are also described.
Abstract:
A method of producing olefinic and aromatic hydrocarbons from waste plastics comprising feeding a mixture of plastics along with the products of the oxidation of light hydrocarbons to a process in which the feed mixture is catalytically pyrolyzed to produce olefins and aromatics.
Abstract:
A process that separates the fillers found in plastics from catalyst and the gases in a fluid bed catalytic pyrolysis process for the conversion of waste plastics, polymers, and other waste materials to useful chemical and fuel products such as paraffins, olefins, and aromatics such as BTX, is described.
Abstract:
Processes of catalytically pyrolyzing solid hydrocarbonaceous materials in a downflow fluid bed reactor and regenerating the catalyst in an upflow fluidized bed reactor are described. Systems and compositions useful in the catalytic pyrolysis of plastics are also described.
Abstract:
A two-step process that includes a pyrolytic first step carried out in a mechanically or gravitationally impelled reactor and a catalytic fluid bed second step that upgrades the resulting vapor, for the conversion of waste plastics, polymers, and other waste materials to useful chemical and fuel products such as paraffins, olefins, and aromatics such as BTX is described.
Abstract:
Methods of separating and purifying products from the catalytic fast pyrolysis of biomass are described. In a preferred method, a portion of the products from a pyrolysis reactor are recovered and purified using a hydrotreating step that reduces the content of sulfur, nitrogen, and oxygen components, and hydrogenates olefins to produce aromatic products that meet commercial quality specifications.
Abstract:
The present invention provides an improved process for recovering CO from a catalytic fast pyrolysis (CFP) process product effluent. The process comprises the steps of: a) providing a first vapor phase stream resulting from a CFP process comprising, on a water-free and solids-free basis, from 25 to 80% CO and at least 15% CO2, b) mixing the first vapor phase stream of step a) with a particular solvent to make a mixed phase stream, c) separating the mixed phase stream of step b) into a second vapor phase stream comprising CO and a liquid phase stream, and d) recovering a product stream from the second vapor phase stream of step c) having a higher concentration of CO and a lower concentration of CO2 than the first vapor phase stream of step a).