Abstract:
In a method of analyzing a wafer sample, a first defect of a photoresist pattern on the wafer sample having shot regions exposed with related exposure conditions is detected. A first portion of the pattern includes the shot regions exposed with an exposure condition corresponding to a reference exposure condition and a tolerance error range of the reference exposure condition. The first defect repeatedly existing in at least two of the shot regions in a second portion of the pattern is set up as a second defect of the pattern. A first reference image displaying the second defect is obtained. The first defect of the shot regions in the first portion corresponding to the second defect is set up as a third defect corresponding to weak points of the pattern. The exposure conditions of the shot region having no weak points are set up as an exposure margin of an exposure process.
Abstract:
In a method of detecting defects in patterns and an apparatus for performing the method, a first image of a detection region on a semiconductor substrate may be acquired. A second image may be acquired from the first image by performing a Fourier transform and performing a low pass filtering. The second image may be compared with a reference image so that the defects of the detection region are detected. Existence of the defect of the second image is determined using a relation value between a grey level of each of pixels of the second image and the reference image, respectively. When a defect exists, the horizontal and the vertical positions of the pixel where the relation value is minimum are combined to determine the position of the defect.
Abstract:
An apparatus and method of measuring the thickness of a substrate. A first light is reflected from a standard sample having a known thickness. The light is concentrated through the light-focusing lens. The first light is converted into a first electrical signal by a detector responding to a light intensity of the concentrated first light. A second light is reflected from a substrate, and then is concentrated through the light-focusing lens. The second light is converted into a second electrical signal by the detector responding to a light intensity of the concentrated second light. An operating unit determines first and second peak values from the first and second electrical signals, respectively. The operating unit calculates the thickness of the substrate by using a standard distance corresponding to the first peak value, a moving distance of the substrate corresponding to the second peak value, and the known thickness of the standard sample.
Abstract:
In a method of inspecting an object, a first light is irradiated onto a bare object and a first reflection signal is reflected from the bare object. A second light is irradiated onto a processed object and a second reflection signal is reflected from the processed object. The first and second reflection signals are differentiated, to thereby generate respective first and second differential signals. A defect on the processed object is detected by a comparison between the first and second differential signals. The first and second differential signals overlap with each other and at least one signal-deviation portion is detected. The first and second differential signals are spaced apart out of an allowable error range in the signal-deviation portion. The defect is detected from a portion of the processed object corresponding to the signal-deviation portion.
Abstract:
In a method and an apparatus for inspecting defects on a substrate using a light beam, a light source irradiates light beams having different wavelengths onto the substrate. A detector detects first lights scattered from a surface of the substrate and second lights scattered from impurities on the substrate by irradiation of the light beams. An operation unit compares first intensities of the first lights with second intensities of the second lights in order to produce differential values therebetween, and selects a wavelength corresponding to a maximum value of the differential values. An inspection process for inspecting the defects on the substrate is performed using a light beam having the selected wavelength.
Abstract:
Disclosed are a method and apparatus for measuring a thickness of a metal layer formed on a semiconductor substrate. First, second, and third light pulses are successively irradiated onto a top surface of the metal layer to generate respective first, second, and third second sonic waves in the metal layer. Interference between the first and second sonic waves alters a detected reflectivity of the third light pulse off the metal layer. Maximum interference of the sonic waves occurs where the first sonic wave travels to a bottom surface of the metal layer and back to the top surface in the same time that it takes for the second light pulse to arrive at the surface of the metal layer. Accordingly, the velocity of the first sonic wave and a time lag between the first and second light pulses are used to determine the thickness of the metal layer.
Abstract:
A method for monitoring an ion implanter includes positioning a substrate behind an interceptor for intercepting a portion of an ion beam to be irradiated toward the substrate, irradiating a first ion beam toward the substrate to form a first shadow on the substrate, rotating the substrate about a central axis of the substrate, irradiating a second ion beam toward the substrate to form a second shadow on the substrate, and measuring a dosage of ions implanted into the substrate to monitor whether the rotation of the substrate has been normally performed. Preferably, a dosage of ions implanted into the substrate is calculated from a thermal wave value of the substrate and whether the rotation of the substrate has been normally performed is monitored by comparing the thermal wave value corresponding to the first shadow with a reference thermal wave value.
Abstract:
Wafer inspection system and method which are suitable for inspection of highly integrated semiconductor devices. The wafer inspection system includes an apparatus for selectively inspecting conductive pattern defects, which includes a sensor for scanning the surface of a wafer in a noncontact manner and an RLC circuit which is connected to the sensor and converts a signal obtained from the sensor into an electrical characteristic; and an image processing computer which is connected to the apparatus for selectively inspecting conductive pattern defects. Only conductive defects are selectively extracted, thereby increasing inspection efficiency.
Abstract:
There is provided a contact failure inspection system and method for semiconductor devices and a method of manufacturing semiconductor devices. Using digitized values for electron signals detected using a scanning electron microscope, contacts can be inspected to identify failures such as non-open contact holes. The contact failure inspection is performed by comparing the electron signal value detected from a unit area including at least one contact hole with values representative of the electron signal corresponding to a normal contact.
Abstract:
Apparatus and method for manufacturing a semiconductor device through a layer material dimension analysis increase productivity. The method includes performing a semiconductor manufacturing process of at least one reference substrate and at least one target substrate in a semiconductor process device, detecting a reference spectrum and a reference profile for the reference substrate, determining a relation function between the detected reference spectrum and reference profile, detecting a real-time spectrum of the target substrate, and determining in real time a real-time profile of the target substrate processed in the semiconductor process device by using the detected real-time spectrum as a variable in the determined relation function.