Abstract:
Embodiments of the present invention relate to an a method, apparatus and computer program product for controlling the operation of a drive unit comprising a plurality of switching modules arranged to receive a DC electricity supply and generate an AC electricity supply for driving a load from the received DC electricity supply, the AC electricity supply being generated by the switching of the plurality of switching modules between a conducting state and a non-conducting state. The method comprises receiving one or more characteristics associated with each of the switching modules, comparing, for each switching module of the plurality of switching modules, a characteristic of the switching module with an equivalent characteristic associated with one or more other switching modules of the plurality of switching modules, and controlling a time period during which one or more of the plurality of switching modules are in the conducting state in accordance with a result of the comparison.
Abstract:
There is provided a motor drive comprising: a temperature sensor arranged to sense a temperature of the drive; a braking resistor; switching means arranged when activated to cause current to flow to the braking resistor; and controlling means arranged to activate the switching means when the sensed temperature falls below a predetermined threshold. There is also provided a method of controlling a temperature of a motor drive comprising a braking resistor. The method comprising comprises: monitoring a temperature of the drive; and activating switching means to cause current to flow to the braking resistor when the monitored temperature falls below a predetermined threshold.
Abstract:
A method for controlling the temperature of a component is disclosed. The component is part of a drive configured to drive an electrical machine via an electrically conductive member. The method comprises determining a value of an attribute of the electrically conductive member; configuring a model to calculate the temperature of the component, the model being configured based on the determined value of the attribute of the electrically conductive member; using the model to calculate the temperature of the component; and if the calculated temperature of the component does not meet a predetermined temperature condition, issuing a command to control the operation of the drive such that the temperature of the component is changed to meet the predetermined temperature condition.
Abstract:
According to a first aspect of the disclosure, there is provided a method of controlling a power output of an inverter. The method comprises measuring an output current of the inverter, determining a difference between the output current and a reference current, and controlling a reference input voltage of the inverter as a function of the determined difference. In a second aspect of the disclosure, there is described a system for controlling a power output of an inverter. The system comprises an inverter arranged to output a current as a function of a reference input voltage. The system further comprises a controller arranged to determine a difference between the output current and a reference current. The controller is further arranged to control the reference input voltage as a function of the determined difference. The method may allow for control of a photovoltaic inverter at a power less than its maximum capability for a given solar irradiation, which may avoid the problem of the photovoltaic array voltage rising above a level where the inverter can run.
Abstract:
An electromechanical system includes an inverter drive, a component arranged during operation to generate a variable force having one or more periodic frequency components, and processing circuitry arranged to determine the power output of the inverter drive, measure a difference between the power output and a reference power output, and control an output frequency of the inverter drive as a function of the measured difference, so as to stabilize the power output during operation of the component. Other example electromechanical systems, inverter drives and methods are also disclosed.
Abstract:
A method and a control system for a multiphase-phase inverter system, the control system comprising an electric current detection circuit and a processor, wherein each phase of an electrical cycle is separated into a plurality of sections, inputs from the electric current detection circuit are received, each input indicating a measured phase current, and a phase current is calculated in each section, wherein the phase current calculation in at least one of the sections is determined from a changing ratio of the value of the phase current calculated from the measured values of the other phase currents in the multiphase system and the measured value of the phase.
Abstract:
The present disclosure relates to a method of determining an offset between a detector and a point on a motor, the movement of the point on the motor being impeded in at least one direction. In particular, this disclosure relates to a method of determining a commutation offset for an encoder that works in conjunction with a synchronous motor. The commutation offset is an offset between the detector and the north pole of a permanent magnet within the motor. The method comprises setting a test value for the offset, causing a displacement of the detector based on the test value and measuring that displacement. The method further comprises repeatedly increasing the test value, and causing and measuring a displacement for each so increased test value until it is determined that the test value has crossed a threshold.
Abstract:
The present disclosure relates to a power conversion system comprising a transformer comprising first, second, and third inductive coupling elements, a first power supply arranged to provide a voltage across the first coupling element, a second power supply arranged to provide a voltage across the second coupling element, an output arranged to receive a voltage from the third coupling element. In use, the voltage across the first coupling element and the voltage across the second coupling element are arranged to induce a voltage in the third coupling element. The system also comprises a control arrangement arranged to independently control the operation of the first and second power supplies.
Abstract:
A device for locking to a DIN rail includes a shaft defining an axis of rotation and first and second rail-engaging members connected to the shaft. The rail-engaging members are each shaped to engage a DIN rail in a respective engaging position. The shaft is rotatable about the axis of rotation and thereby arranged to urge each rail-engaging member into its respective engaging position with a DIN rail positioned between the first and second rail-engaging members. Other example devices for locking to a DIN rail and methods of mounting component(s) to a DIN rail are also disclosed.
Abstract:
An electromechanical system includes an inverter drive, a component arranged during operation to generate a variable force having one or more periodic frequency components, and processing circuitry arranged to determine the power output of the inverter drive, measure a difference between the power output and a reference power output, and control an output frequency of the inverter drive as a function of the measured difference, so as to stabilise the power output during operation of the component. Other example electromechanical systems, inverter drives and methods are also disclosed.