Abstract:
A method for collision avoidance for a machine is disclosed. The method includes detecting an obstacle with an obstacle detection system and generating a corresponding signal. The obstacle detection system includes an operator input device. The method also includes providing an obstacle detection warning in response to the signal. The method further includes determining with a controller whether the operator input device has been activated in response to the obstacle detection warning.
Abstract:
A system for providing an insurance product for at least one insured customer, including a communication device for receiving at least one application, each application associated with an applicant and including information about the applicant, a processor configured to determine for each application if the applicant qualifies as an insured customer, and a memory configured for storing an account record associated with each insured customer having at least one insured event associated with that insured customer, a benefit amount payable in association with the at least one insured event, an insurance cost, and a cash value based on predetermined account record factors, wherein the processor may define a reserve fund, determine an investment performance associated with the reserve fund during at least one period of time, and calculate a performance credit amount based on the investment performance of the reserve fund and the cash value.
Abstract:
A cleaning implement for removing particulate soils from a compressible resilient surface is provided.The cleaning implement includes a ramp for pressing particulates against the compressible resilient surface and a collection member for collecting the particulates which are projected away from the compressible resilient surface when the cleaning implement is moved across the compressible resilient surface.
Abstract:
Measuring transit time across an asynchronous first-in-first-out (FIFO) memory can include sampling an indication of a value of a read pointer of the FIFO memory at a sampling frequency that exceeds a frequency of a read clock and a write clock of the FIFO memory. An indication of a value of a write pointer of the FIFO memory can be sampled at the sampling frequency. For each sampling period, a measure of occupancy of the FIFO memory can be calculated according to a sampled pair including the indication of the value of the read pointer and the indication of the value of the write pointer. The measure of occupancy can be averaged over a predetermined number of cycles of the sampling frequency. The averaged measure of occupancy can be output as an indication of transit time across the FIFO memory.
Abstract:
A patient interface for delivering breathable gas to a patient includes a nasal prong assembly including a pair of nasal prongs structured to sealingly communicate with nasal passages of a patient's nose in use and headgear to maintain the nasal prong assembly in a desired position on the patient's face. The headgear includes side straps and rigidizers provided to respective side straps. Each rigidizer includes a first end portion that provides a connector structured to engage a respective end of the nasal prong assembly and an inwardly curved protrusion in the form of a cheek support that curves inwardly of the connector. The cheek support is adapted to follow the contour of the patient's cheek and guide a respective end portion of the side strap into engagement with the patient's cheek to provide a stable cheek support.
Abstract:
The invention generally relates to a method for pulmonary delivery of therapeutic, prophylactic and diagnostic agents to a patient wherein the agent is released in a sustained fashion, and to particles suitable for use in the method. In particular, the invention relates to a method for the pulmonary delivery of a therapeutic, prophylactic or diagnostic agent comprising administering to the respiratory tract of a patient in need of treatment, prophylaxis or diagnosis an effective amount of particles comprising a therapeutic, prophylactic or diagnostic agent or any combination thereof in association with a charged lipid, wherein the charged lipid has an overall net charge which is opposite to that of the agent upon association with the agent. Release of the agent from the administered particles occurs in a sustained fashion.
Abstract:
A rigid, water-soluble container is made of an injection molded poly(vinyl alcohol) and/or a cellulose ether, which container encases a fabric care, surface care or dishwashing composition; and a capsule container comprising at least two components made of one or more material(s) that can be molded and which are water soluble or water dispersible or in which a substantial part of the surface of these components is water soluble or water dispersible so as to leave perforations throughout the wall when the capsular container is placed in contact with an aqueous environment. The container has one to six compartments, preferably one, two or three, the content of the various compartments being accessible to the aqueous environment when the capsular container is exposed to such an aqueous environment. The accessibility time of the various compartments is the same or different from one compartment to another compartment, with the proviso that the content of the container is not a fabric care, surface care or dishwashing composition.
Abstract:
Methods and devices to determine rate of particle production and the size range for the particles produced for an individual are described herein. The device (10) contains a mouthpiece (12), a filter (14), a low resistance one-way valve (16), a particle counter (20) and a computer (30). Optionally, the device also contains a gas flow meter (22). The data obtained using the device can be used to determine if a formulation for reducing particle exhalation should be administered to an individual. This device is particularly useful prior to and/or following entry in a cleanroom to ensure that the cleanroom standards are maintained. The device can also be used to identify animals and humans who have an enhanced propensity to exhale aerosols (referred to herein as “over producers”, “super-producers”, or “superspreaders”). Formulations to reduce particle production are also described herein. The formulation is administered in an amount sufficient to alter biophysical properties in the mucosal linings of the body. When applied to mucosal lining fluids, the formulation alters the physical properties such as the gel characteristics at the air/liquid interface, surface elasticity, surface viscosity, surface tension and bulk viscoelasticity of the mucosal lining. The formulation is administered in an effective amount to minimize ambient contamination due to particle formation during breathing, coughing, sneezing, or talking, which is particularly important in cleanroom applications. In one embodiment, the formulation for administration is a non-surfactant solution. In one embodiment, the formulations are conductive formulations containing conductive agents, such as salts, ionic surfactants, or other substances that are in an ionized state or easily ionized in an aqueous or organic solvent environment. Preferably the formulation is administered in the form of an aerosol.
Abstract:
A radio frequency identification (RIFD) inlay includes an electrical connection between a chip and an antenna. The electrical connection includes conductive interposer leads and a capacitive connection. The capacitive connection may involve putting the antenna and the interposer leads into close proximity, with dielectric pads therebetween, to allow capacitive coupling between the antenna and the interposer leads. The dielectric pads may include a non-conductive adhesive and a high dielectric material, such as a titanium oxide. The connections provide a convenient, fast, and effective way to operatively couple antennas and interposers. The RFID inlay may be part of an RFID label or RFID tag.