Abstract:
A self-testing memory module includes a printed circuit board configured to be operatively coupled to a memory controller of a computer system and includes a plurality of memory devices on the printed circuit board, each memory device of the plurality of memory devices comprising data, address, and control ports. The memory module also includes a control module configured to generate address and control signals for testing the memory devices. The memory module includes a data module comprising a plurality of data handlers. Each data handler is operable independently from each of the other data handlers of the plurality of data handlers. Each data handler is operatively coupled to a corresponding plurality of the data ports of one or more of the memory devices and is configured to generate data for writing to the corresponding plurality of data ports.
Abstract:
A circuit includes a first plurality of contacts configured to be in electrical communication with a plurality of electronic devices. The circuit card further includes a flexible portion including a dielectric layer, a second plurality of contacts, and a plurality of electrical conduits extending across a region of the flexible portion and in electrical communication with one or more contacts of the first plurality of contacts and with the second plurality of contacts. The flexible portion further includes an electrically conductive layer extending across the region of the flexible portion. The electrically conductive layer is superposed with the plurality of electrical conduits with the dielectric layer therebetween. The electrically conductive layer does not overlay one or more portions of the dielectric layer in the region of the flexible portion.
Abstract:
A circuit is configured to be mounted on a memory module configured to be operationally coupled to a computer system. The memory module has a first number of ranks of double-data-rate (DDR) memory circuits activated by a first number of chip-select signals. The circuit is configurable to receive a set of signals comprising address signals and a second number of chip-select signals smaller than the first number of chip-select signals. The circuit is further configurable to generate phase-locked clock signals, to selectively isolate a load of at least one rank of the first number of ranks from the computer system in response at least in part to the set of signals, and to generate the first number of chip-select signals in response at least in part to the phase-locked clock signals, the address signals, and the second number of chip-select signals.
Abstract:
A self-testing memory module includes a printed circuit board configured to be operatively coupled to a memory controller of a computer system and includes a plurality of memory devices on the printed circuit board, each memory device of the plurality of memory devices comprising data, address, and control ports. The memory module also includes a control module configured to generate address and control signals for testing the memory devices. The memory module includes a data module comprising a plurality of data handlers. Each data handler is operable independently from each of the other data handlers of the plurality of data handlers. Each data handler is operatively coupled to a corresponding plurality of the data ports of one or more of the memory devices and is configured to generate data for writing to the corresponding plurality of data ports.
Abstract:
A memory module connectable to a computer system includes a printed circuit board, a plurality of memory devices coupled to the printed circuit board, and a logic element coupled to the printed circuit board. The plurality of memory devices has a first number of memory devices. The logic element receives a set of input control signals from the computer system. The set of input control signals corresponds to a second number of memory devices smaller than the first number of memory devices. The logic element generates a set of output control signals in response to the set of input control signals. The set of output control signals corresponds to the first number of memory devices.
Abstract:
A circuit card includes a rigid portion having a first plurality of contacts configured to be in electrical communication with a plurality of memory devices. The circuit card further includes a flexible connector coupled to the rigid portion. The flexible connector has a first side and a second side. The flexible connector comprises a dielectric layer, a second plurality of contacts configured to be in electrical communication with a substrate, and a plurality of electrical conduits on the first side of the flexible connector and extending from the rigid portion to the second plurality of contacts. The plurality of electrical conduits is in electrical communication with one or more contacts of the first plurality of contacts and with the second plurality of contacts. The flexible connector further includes an electrically conductive layer on the second side of the flexible connector. The electrically conductive layer is superposed with the plurality of electrical conduits with the dielectric layer therebetween. The electrically conductive layer does not cover one or more portions of the second side of the flexible connector, thereby providing improved flexibility of the flexible connector.
Abstract:
A memory module comprises a plurality of memory components. Each memory component has a first bit width. The plurality of memory components are configured as one or more pairs of memory components. Each pair of memory components simulates a single virtual memory component having a second bit width which is twice the first bit width.
Abstract:
A module is electrically connectable to a computer system. The module includes a frame having an edge connector with a plurality of electrical contacts which are electrically connectable to the computer system. The module further includes a first printed circuit board coupled to the frame. The first printed circuit board has a first surface and a first plurality of components mounted on the first surface. The first plurality of components is electrically coupled to the electrical contacts of the edge connector. The module further includes a second printed circuit board coupled to the frame. The second printed circuit board has a second surface and a second plurality of components mounted on the second surface. The second plurality of components is electrically coupled to the electrical contacts of the edge connector. The second surface of the second printed circuit board faces the first surface of the first printed circuit board. The module further includes at least one thermally conductive layer positioned between the first plurality of components and the second plurality of components. The at least one thermally conductive layer is thermally coupled to the first plurality of components, to the second plurality of components, and to the electrical contacts of the edge connector.
Abstract:
Integrated circuits utilizing standard commercial packaging are arranged on a printed circuit board to allow the production of 1-Gigabyte and 2-Gigabyte capacity memory modules. A first row of integrated circuits is oriented in an opposite orientation to a second row of integrated circuits. The integrated circuits in a first half of the first row and in the corresponding half of the second row are connected via a signal trace to a first register. The integrated circuits in a second half of the first row and in the corresponding half of the second row are connected to a second register. Each register processes a non-contiguous subset of the bits in each data word.