摘要:
A capacitor structure includes a semiconductor substrate; a first capacitor plate positioned on the semiconductor substrate, the first capacitor plate including a polysilicon structure having a surrounding spacer; a silicide layer formed in a first portion of an upper surface of the first capacitor plate; a capacitor dielectric layer formed over a second portion of the upper surface of the first capacitor plate and extending laterally beyond the spacer to contact the semiconductor substrate; a contact in an interlayer dielectric (ILD), the contact contacting the silicide layer and a first metal layer over the ILD; and a second capacitor plate over the capacitor dielectric layer, wherein a metal-insulator-metal (MIM) capacitor is formed by the first capacitor plate, the capacitor dielectric layer and the second capacitor plate and a metal-insulator-semiconductor (MIS) capacitor is formed by the second capacitor plate, the capacitor dielectric layer and the semiconductor substrate.
摘要:
An asymmetric silicon-on-insulator (SOI) junction field effect transistor (JFET) and a method. The JFET includes a bottom gate on an insulator layer, a channel region on the bottom gate and, on the channel region, source/drain regions and a top gate between the source/drain regions. STIs isolate the source/drain regions from the top gate and a DTI laterally surrounds the JFET to isolate it from other devices. Non-annular well(s) are positioned adjacent to the channel region and bottom gate (e.g., a well having the same conductivity type as the top and bottom gates can be connected to the top gate and can extend down to the insulator layer, forming a gate contact on only a portion of the channel region, and/or another well having the same conductivity type as the channel and source/drain regions can extend from the source region to the insulator layer, forming a source-to-channel strap).
摘要:
A resistor with heat sink is provided. The heat sink includes a conductive path having metal or other thermal conductor having a high thermal conductivity. To avoid shorting the electrical resistor to ground with the thermal conductor, a thin layer of high thermal conductivity electrical insulator is interposed between the thermal conductor and the body of the resistor. Accordingly, a resistor can carry large amounts of current because the high conductivity thermal conductor will conduct heat away from the resistor to a heat sink. Various configurations of thermal conductors and heat sinks are provided offering good thermal conductive properties in addition to reduced parasitic capacitances and other parasitic electrical effects, which would reduce the high frequency response of the electrical resistor.
摘要:
Methods of forming hyper-abrupt p-n junctions and design structures for an integrated circuit containing devices structures with hyper-abrupt p-n junctions. The hyper-abrupt p-n junction is defined in a SOI substrate by implanting a portion of a device layer to have one conductivity type and then implanting a portion of this doped region to have an opposite conductivity type. The counterdoping defines the hyper-abrupt p-n junction. A gate structure carried on a top surface of the device layer operates as a hard mask during the ion implantations to assist in defining a lateral boundary for the hyper-abrupt p-n junction.
摘要:
An integrated circuit (IC) chip is provided comprising at least one trench including a stress-inducing material which imparts a stress on a channel region of a device, such as a junction gate field-effect transistor (JFET) or a metal-oxide-semiconductor field-effect transistor (MOSFET). A related method is also disclosed.
摘要:
A capacitor structure includes a semiconductor substrate; a first capacitor plate positioned on the semiconductor substrate, the first capacitor plate including a polysilicon structure having a surrounding spacer; a silicide layer formed in a first portion of an upper surface of the first capacitor plate; a capacitor dielectric layer formed over a second portion of the upper surface of the first capacitor plate and extending laterally beyond the spacer to contact the semiconductor substrate; a contact in an interlayer dielectric (ILD), the contact contacting the silicide layer and a first metal layer over the ILD; and a second capacitor plate over the capacitor dielectric layer, wherein a metal-insulator-metal (MIM) capacitor is formed by the first capacitor plate, the capacitor dielectric layer and the second capacitor plate and a metal-insulator-semiconductor (MIS) capacitor is formed by the second capacitor plate, the capacitor dielectric layer and the semiconductor substrate.
摘要:
The structure for millimeter-wave frequency applications, includes a Schottky barrier diode (SBD) with a cutoff frequency (FC) above 1.0 THz formed on a SiGe BiCMOS wafer. A method is also contemplated for forming a Schottky barrier diode on a SiGe BiCMOS wafer, including forming a structure which provides a cutoff frequency (Fc) above about 1.0 THz. In embodiments, the structure which provides a cutoff frequency (Fc) above about 1.0 THz may include an anode having an anode area which provides a cutoff frequency (FC) above about 1.0 THz, an n-epitaxial layer having a thickness which provides a cutoff frequency (FC) above about 1.0 THz, a p-type guardring at an energy and dosage which provides a cutoff frequency (FC) above about 1.0 THz, the p-type guardring having a dimension which provides a cutoff frequency (FC) above about 1.0 THz, and a well tailor with an n-type dopant which provides a cutoff frequency (FC) above about 1.0 THz.
摘要:
The present invention provides a semiconductor structure including a buried resistor with improved control, in which the resistor is fabricated in a region of a semiconductor substrate beneath a well region that is also present in the substrate. In accordance with the present invention, the inventive structure includes a semiconductor substrate containing at least a well region; and a buried resistor located in a region of the semiconductor substrate that is beneath said well region. The present invention also provides a method of fabricating such a structure in which a deep ion implantation process is used to form the buried resistor and a shallower ion implantation process is used in forming the well region.
摘要:
A metal-oxide-semiconductor field effect transistor (MOSFET) has a body layer that follows the contour of exposed surfaces of a semiconductor substrate and contains a bottom surface of a shallow trench and adjoined sidewalls. A bottom electrode layer vertically abuts the body layer and provides an electrical bias to the body layer. A top electrode and source and drain regions are formed on the body layer. The thickness of the body layer is selected to allow full depletion of the body layer by the top electrode and a bottom electrode layer. The portion of the body layer underneath the shallow trench extends the length of a channel to enable a high voltage operation. Further, the MOSFET provides a double gate configuration and a tight control of the channel to enable a complete pinch-off of the channel and a low off-current in a compact volume.
摘要:
A device comprises a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The device further comprises a reach-through structure connecting the first and second sub-collectors and an N− well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. The device further comprises N+ diffusion regions in contact with the N− well, a P+ diffusion region in contact with the N− well, and shallow trench isolation structures between the N+ and P+ diffusion regions.