Abstract:
Provided is a light emitting apparatus. The light emitting apparatus includes a substrate; a light emitting device on the substrate; a fluorescent layer formed on the substrate and the light emitting device to surround the light emitting device; an encapsulant resin layer formed on the substrate and the fluorescent layer to surround the fluorescent layer; and a lens disposed on the light emitting device and supported by the substrate, wherein the lens includes a lens body having a first recess formed at a center of a top surface of the lens body and a second recess formed at a center of a bottom surface of the lens body, and a lens supporter provided at the bottom surface of the lens body to support the lens body such that the lens body is spaced apart from the substrate.
Abstract:
Provided is a high power super capacitor including: a bobbin; an electrode assembly being wound into the bobbin to be in a jellyroll type; a conductive connection member being formed in each of one end and another end of the electrode assembly using electric energy; and a plug being inserted into each of one end and another end of the bobbin, and being bonded with the conductive connection member using electric energy to be electrically connected to the electrode assembly. The electrode assembly may include a first electrode plate having a first polarity and including an inactive material area collector where the conductive connection member is formed in the one end of the electrode assembly, a second electrode plate having a second polarity and including another inactive material area collector where the conductive connection member is formed in the other end of the electrode assembly, and a separator being disposed between the first electrode plate and the second electrode plate to insulate between the first electrode plate and the second electrode plate. Accordingly, the high power super capacitor may increase a contact area without decreasing an area of electrode active material layer and may decrease an equivalent series resistance by forming a conductive connection member using electric energy, thereby enhancing an exothermic characteristic and being applied to a high power field.
Abstract:
A method of manufacturing a solar cell includes preparing a base substrate having a first conductive type; diffusing an impurity having a second conductive type (opposite the first conductive type) into the base substrate to form an emitter layer having a first impurity concentration on the base substrate and a by-product layer on the emitter layer; irradiating a laser beam onto the emitter layer corresponding to a first region of the base substrate to form a front contact portion having a second impurity concentration higher than the first impurity concentration; irradiating the laser beam onto the by-product layer to remove the by-product layer corresponding to the first region; removing the by-product layer from an area outside of the first region; forming an anti-reflection layer on the base substrate; forming a front electrode on the anti-reflection layer corresponding to the first region; and forming a back electrode on the base substrate.
Abstract:
The lighting device includes: a light emitting module including a substrate and a light emitting device disposed on the substrate; a member disposed on the light emitting module, the member including: a base having a hole configured to receive the light emitting device; a projection configured to reflect light from the light emitting device; and a predetermined inclined surface coupled to an outer circumference of the base, a cover surrounding the light emitting module and the member; and a heat sink including a flat surface on which the light emitting module is disposed, and coupled to the cover.
Abstract:
A lighting device includes a light emitting module, a member disposed on the light emitting module, a cover surrounding the light emitting module and the member, and a heat sink. The light emitting module includes a substrate and a light emitting diode disposed on the substrate. The member includes a base having a hole configured to receive the light emitting diode and a projection configured to reflect light from the light emitting diode. A diameter of the base is greater than a maximum diameter of the projection. The heat sink includes an upper portion having a flat surface on which the substrate is disposed and a lower portion having a plurality of grooves formed on a side surface of the heat sink.
Abstract:
Provided is a lens. The lens may include a lens body having a convex top surface having a first recessed part at a central portion thereof and a flat surface at a circumference thereof and a flat bottom surface having a second recessed part at a central portion thereof, and a plurality of lens supports on the bottom surface of the lens body.
Abstract:
In a light-guide module, a method of manufacturing the light-guide module and a backlight assembly having the light-guide module, the light-guide module includes a light-guide plate (“LGP”) and a thin-film layer. The LGP has a light-incident surface into which lights are incident and a light-exiting surface through which lights exit. The thin-film layer is formed on the LGP. The thin-film layer has a concavo-convex pattern formed on an opposite surface of a surface contacting the LGP. Accordingly, a thin-film layer having a concavo-convex pattern is formed on a light-incident surface of an LGP, so that a reflectance of light incident into the LGP may be decreased. Moreover, a light amount transmitted through the LGP is increased in accordance with a decreasing of reflectance, so that a light transmittance may be increased in total.
Abstract:
A strainer wall structure includes curved sections, a method of manufacturing the same, and a filtering method using the strainer wall structure to provide a substantially larger effective filtering area in the same length and width, substantially reducing foreign substances covering a suction surface and flow resistance of the foreign substances, and reducing pressure drop at a cooling water pass corresponding thereto. The strainer wall structure includes an inlet side through which cooling water is introduced and an outlet side through which the filtered cooling water is discharged, includes a body having openings in directions of the inlet side and the outlet side, and a first filter plate inserted into the body and including curved sections formed by alternately bending a first punched plate having filtering holes in opposite directions and at a predetermined interval.
Abstract:
Provided is a lens. The lens may include a lens body having a convex top surface having a first recessed part at a central portion thereof and a flat surface at a circumference thereof and a flat bottom surface having a second recessed part at a central portion thereof, and a plurality of lens supports on the bottom surface of the lens body.