Abstract:
Telechelic unsaturated polymers suitable for conversion to functionalized derivatives such as polyols are prepared by metathesis of an unsaturated copolymer formed by addition polymerization of ethylene, a diene or alkyne and, optionally, one or more C3.20 α-olefins.
Abstract:
A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
A process for the polymerization of one or more addition polymerizable monomers and the resulting polymer composition, said process comprising contacting an addition polymerizable monomer or mixture of monomers in a reactor or reactor zone with a composition comprising at least one polymerization catalyst and a cocatalyst under polymerization conditions, characterized in that at least a portion of said polymerization is conducted in the presence of a multi-centered shuttling agent thereby causing the composition to have a bimodal molecular weight distribution.
Abstract:
A polymerization process and the resulting polymer composition, said process comprising polymerizing one or more addition polymerizable monomers and a polymerizable shuttling agent in the presence of at least one addition polymerization catalyst comprising a metal compound or complex and a cocatalyst under conditions characterized by the formation of a branched polymer, preferably comprising pseudo-block molecular architecture.
Abstract:
A composition for use in forming a multi-block copolymer from a single polymerizable monomer, said copolymer containing therein two or more segments or blocks differing in branching index, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization catalyst, (B) a second olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, at least one of catalyst (A) or catalyst (B) being capable of forming a branched polymer by means of chain walking or reincorporation of in situ formed olefinic polymer chains, and (C) a chain shuttling agent.
Abstract:
Telechelic unsaturated polymers suitable for conversion to functionalized derivatives such as polyols are prepared by metathesis of an unsaturated copolymer formed by addition polymerization of ethylene, a diene or alkyne and, optionally, one or more C3.20 α-olefins.
Abstract:
Copolymers, especially multi-block copolymer containing therein two or more segments or blocks differing in chemical or physical properties, are prepared by polymerizing propylene, 4-methyl-1-pentene, or other C4-8α-olefin and one or more copolymerizable comonomers, especially ethylene in the presence of a composition comprising the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
Abstract:
The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
Abstract:
The present invention relates to the use of at least one solid compound that when used with a polymerization catalyst in a polymerization process results in a phase change of the solid compound to a liquid that renders the polymerization catalyst substantially or completely inactive.