Abstract:
Provided is a signal processor for converting a signal that converts a return to zero (RZ) signal into a non-return to zero (NRZ) signal, in which two 2R (re-amplifying, re-shaping) regenerators are connected in parallel between an input waveguide and an output waveguide with different lengths from each other. The 2R regenerator includes: two semiconductor optical amplifiers having different lengths from each other; and phase control means connected to a short semiconductor optical amplifier. The RZ signal input by a length difference of the waveguide is delayed by a time difference of a half of one bit so that the 2R regenerated NRZ signal can be obtained.
Abstract:
Provided are a THz-wave generation/detection module and a device including the same, which increase heating efficiency and are miniaturized. The module includes a photomixer chip, a lens, a PCB, and a package. The photomixer chip includes an active layer, an antenna, and a plurality of electrode pads. The lens is disposed on the photomixer chip. The PCB includes a plurality of solder balls connected to the electrode pads, under the photomixer chip. The package surrounds a bottom and side of the PCB, and dissipates heating of the active layer, which is transferred from the electrode pad of the photomixer chip to the PCB, to outside.
Abstract:
Provided are a spot size converter and a method of manufacturing the spot size converter. The method includes stacking a lower clad layer, a core layer, and a first upper clad layer on a substrate, tapering the first upper clad layer and the core layer in a first direction on a side of the substrate, forming a waveguide layer on the first upper clad layer and the lower clad layer, and etching the waveguide layer, the first upper clad layer, the core layer, and the lower clad layer such that the waveguide layer is wider than a tapered portion of the core layer on the side of the substrate and has the same width as that of the core layer on another side of the substrate.
Abstract:
Provided is a multichannel transmitter optical module which includes a plurality of light source units configured to generate light, a plurality of an electro-absorption modulators (EAMs) configured to modulate the generated light to an optical signal through a radio frequency (RF) signal, a plurality of RF transmission lines configured to apply the RF signal to the EAMs, and a combiner configured to combine the modulated optical signal. The RF transmission lines are connected to the EAMs in a traveling wave (TW) electrode manner. The multichannel transmitter optical module has alleviated crosstalk and is compactly integrated to have a small size.
Abstract:
A high-efficiency laser diode is provided. Since a λ/4 phase-shifted distributed feedback (DFB) laser diode has a great coupling coefficient, mode stability is poor due to spatial hole burning when multiplication of the coupling coefficient by length of a resonator is equal to or greater than 2. In the inventive concept, a region capable of controlling spatial hole burning is inserted into a semiconductor laser diode structure. Thus, an ultrahigh-speed pulse laser diode having a repetition rate in the band ranging from 100 GHz to 300 GHz is obtained. In addition, a single-mode laser diode with improved energy use efficiency is implemented by changing the configuration of a laser diode.
Abstract:
Provided are a distributed feedback laser diode and a manufacturing method thereof. The distributed feedback laser diode includes a first area having a first grating layer disposed in a longitudinal direction, a second area disposed adjacent to the first area and having a second grating layer disposed in the longitudinal direction, and an active layer disposed over the first and second areas. Coupling coefficients of the first and second grating layers are made different in the first and second areas by a selective area growth method. The distributed feedback laser diode includes grating layers each having an asymmetric coefficient and is implemented within an optimal range capable of obtaining both a high front facet output and stable single mode characteristics. Thus, high manufacturing yield and low manufacturing cost can be achieved.
Abstract:
Provided are a THz-wave generation/detection module and a device including the same, which increase heating efficiency and are miniaturized. The module includes a photomixer chip, a lens, a PCB, and a package. The photomixer chip includes an active layer, an antenna, and a plurality of electrode pads. The lens is disposed on the photomixer chip. The PCB includes a plurality of solder balls connected to the electrode pads, under the photomixer chip. The package surrounds a bottom and side of the PCB, and dissipates heating of the active layer, which is transferred from the electrode pad of the photomixer chip to the PCB, to outside.
Abstract:
Provided is an optical comb generator including a light source, a first waveguide region, a modulation region, and a second waveguide region. The light source is configured to output single-mode light. The first waveguide region divides an output of the light source into first light and second light. The modulation region includes a first modulator and a second modulator modulating the first light and the second light respectively. The second waveguide region combines outputs of the first modulator and the second modulator to output an optical comb. Here, the first modulator and the second modulator respectively include a first quantum well and a second quantum well having an asymmetric structure with respect to each other. The light source, the first waveguide region, the modulation region, and the second waveguide region are integrated into one substrate.
Abstract:
Provided are a laser diode generating passive mode locking that does not contain non-linear sector of an SA, and a method of creating an optical pulse using the same diode. The laser diode includes a DFB sector serving as a reflector and a gain sector. The gain sector is connected to the DFB sector and includes an as-cleaved facet formed at the end of the gain sector. When a current less than a threshold current is applied to the DFB sector to allow the DFB sector to operate as a reflector, passive mode locking occurs swiftly and therefore a sector of the SA is not required, which makes manufacturing simple. Also, it is possible to effectively extend a frequency variable region compared to using of the SA.
Abstract:
A multi-section semiconductor laser diode is disclosed. The laser diode includes a complex-coupled DFB laser section that includes a complex-coupled grating and an active structure for controlling the intensity of oscillating laser light, to oscillate laser light in a single mode, and an external cavity including a phase control section and an amplifier section, the phase control section having a passive waveguide that controls a phase variation of feedback laser light, the amplification section having an active structure that controls the strength of the feedback laser light. Currents are separately provided to the three sections to generate optical pulses with tuning range of tens of GHz. Applications include the clock recovery in the 3R regeneration of the optical communication.