Abstract:
Systems and processes for die-cutting stretched base films are disclosed. In some examples, the systems can include fixed or adjustable die-cut heads that are offset from one another based on an amount of distortion of the base film. Systems and processes for reducing the amount of distortion or shrinking of base films are also disclosed. In some examples, the processes can include pre-shrinking the base film by exposing the film to elevated temperatures sufficient to shrink the film. The pre-shrinking can be performed on the base film material alone, or can be applied during subsequent annealing stages. The pre-shrinking can be used alone or in combination with the offset die-cutters.
Abstract:
An electronic device may have a display with an array of pixels. Each pixel may include inorganic light-emitting diodes of the same color such as a blue inorganic light-emitting diode. To emit different colors of light using the same type of inorganic light-emitting diodes, quantum dot layers may be used. Each quantum dot layer may have an associated reflective layer. Each light-emitting diode may also have an associated reflective layer. The reflective layer for the light-emitting diode may conform to the light-emitting diode or may be separated from the light-emitting diode by gap. When the reflective layer is separated from the light-emitting by a gap, the gap may be filled by a quantum dot layer or a diffusive layer.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
Abstract:
An electronic device may have a display with an array of inorganic light-emitting diodes. The array of inorganic light-emitting diodes may be overlapped by a polarizer layer such as a circular polarizer. Alternatively, the display may be a polarizer-free display without any polarizer layer over the array of inorganic light-emitting diodes. Each inorganic light-emitting diode may be surrounded by a diffuser that redirects edge-emissions towards a viewer. A top diffuser, a color filter layer, a microlens, and/or a microlens with color filtering and/or diffusive properties may also optionally overlap each inorganic light-emitting diode. The inorganic light-emitting diodes may have reflective sidewalls to mitigate edge-emissions. In this type of arrangement, the array of inorganic light-emitting diodes may be coplanar with one or more opaque masking layers. To mitigate reflections, the display may include two opaque masking layers having differing properties or a single phase separated opaque masking layer.
Abstract:
Display panel redundancy schemes and methods of operation are described. In an embodiment, and display panel includes an array of drivers (e.g. microdrivers), each of which including multiple portions to independently receive control and pixel bits. In an embodiment, each driver portion is to control a group of redundant emission elements.
Abstract:
An organic light-emitting diode (OLED) display may have an array of organic light-emitting diode pixels that each have OLED layers interposed between a cathode and an anode. Voltage may be applied to the anode of each pixel to control the magnitude of emitted light. The conductivity of the OLED layers may allow leakage current to pass between neighboring anodes in the display. To reduce leakage current and the accompanying cross-talk in a display, the pixel definition layer may disrupt continuity of the OLED layers. The pixel definition layer may have an undercut to disrupt continuity of some but not all of the OLED layers. The undercut may be defined by three discrete portions of the pixel definition layer. The undercut may result in a void that is interposed between different portions of the OLED layers to break a leakage path formed by the OLED layers.
Abstract:
To extract light from a light-emitting diode (and thereby improve efficiency of the display), a microlens stack may be formed over the light-emitting diode. The microlens stack may include an array of microlenses that is covered by an additional single microlens. Having stacked microlenses in this way increases lens power without increasing the thickness of the display. The array of microlenses may be formed from an inorganic material whereas the additional single microlens may be formed from an organic material. The additional single microlens may conform to the upper surfaces of the array of microlenses. An additional low-index layer may be interposed between the light-emitting diode and the array of microlenses. A diffusive layer may be formed around the light-emitting diode to capture light emitted from the light-emitting diode sidewalls.
Abstract:
An electronic device may have transparent members such as display cover layers and camera windows. A transparent member such as a sapphire member may be provided with an antireflection coating. The antireflection coating may have a stack of dielectric thin-film interference filter layers that form a thin-film interference filter that suppresses visible light reflections. The stack of dielectric thin-film interference filter layers may have thicknesses and materials that provide the thin-film interference filter and coating with low light reflection properties while enhancing scratch resistance. An adhesion layer may be used to help adhere the stack of thin-film interference filter layer to the transparent member. An antismudge coating such as a fluoropolymer coating may be used to reduce smudging. Graded layers and layers with elevated hardness values may be used in the coating.
Abstract:
Touch sensor panels typically include a plurality of layers that can be stacked on top of each other. When the touch sensor panel is used in a bright environment, incident light can hit the interfaces between those layers of the stackup having mismatched refractive indices and can reflect off those interfaces. The light reflected from those interfaces can give rise to the appearance of fringes on the touch sensor panel, which can be visually distracting. In order to reduce the appearance of these fringes, embodiments of the disclosure are directed to the addition of an index matching passivation layer between a conductive layer of traces and an adhesive layer in the touch sensor panel stackup.