Abstract:
Disclosed herein is a computer-implemented defect prediction method for a device manufacturing process involving processing a portion of a design layout onto a substrate, the method comprising: identifying a hot spot from the portion of the design layout; determining a range of values of a processing parameter of the device manufacturing process for the hot spot, wherein when the processing parameter has a value outside the range, a defect is produced from the hot spot with the device manufacturing process; determining an actual value of the processing parameter; determining or predicting, using the actual value, existence, probability of existence, a characteristic, or a combination thereof, of a defect produced from the hot spot with the device manufacturing process.
Abstract:
In a method of determining the focus of a lithographic apparatus used in a lithographic process on a substrate, the lithographic process is used to form a structure on the substrate, the structure having at least one feature which has an asymmetry in the printed profile which varies as a function of the focus of the lithographic apparatus on the substrate. A first image of the periodic structure is formed and detected while illuminating the structure with a first beam of radiation. The first image is formed using a first part of non-zero order diffracted radiation. A second image of the periodic structure is formed and detected while illuminating the structure with a second beam of radiation. The second image is formed using a second part of the non-zero order diffracted radiation which is symmetrically opposite to the first part in a diffraction spectrum. The ratio of the intensities of the measured first and second portions of the spectra is determined and used to determine the asymmetry in the profile of the periodic structure and/or to provide an indication of the focus on the substrate. In the same instrument, an intensity variation across the detected portion is determined as a measure of process-induced variation across the structure. A region of the structure with unwanted process variation can be identified and excluded from a measurement of the structure.
Abstract:
A method including: obtaining a detected representation of radiation redirected by each of a plurality of structures from a substrate additionally having a device pattern thereon, wherein each structure has an intentional different physical configuration of the respective structure than the respective nominal physical configuration of the respective structure, wherein each structure has geometric symmetry at the respective nominal physical configuration, wherein the intentional different physical configuration of the structure causes an asymmetric optical characteristic distribution and wherein a patterning process parameter measures change in the physical configuration; and determining a value, based on the detected representations and based on the intentional different physical configurations, to setup, monitor or correct a measurement recipe for determining the patterning process parameter.
Abstract:
Disclosed is method of determining at least one homogeneity metric describing homogeneity of an etched trench on a substrate formed by a lithographic manufacturing process. The method comprises obtaining one or more images of the etched trench, wherein each of said one or more images comprises a spatial representation of one or more parameters of scattered radiation as detected by a detector or camera following scattering and/or diffraction from the etched trench; and measuring homogeneity along the length of the etched trench on said one or more images to determine said at least one homogeneity metric.
Abstract:
Methods and systems for determining information about a target structure are disclosed. In one arrangement, a value of an asymmetry indicator for the target structure is obtained. The value of the asymmetry indicator represents an amount of an overlay independent asymmetry in the target structure. An error in an initial overlay measurement performed on the target structure at a previous time is estimated. The estimation is performed using the obtained value of the asymmetry indicator and a relationship between values of the asymmetry indicator and overlay measurement errors caused at least partially by overlay independent asymmetries. An overlay in the target structure is determined using the initial overlay measurement and the estimated error.
Abstract:
The invention relates to a sensor (SE) comprising: —a radiation source (LS) to emit radiation (LI) having a coherence length towards a sensor target (GR); and —a polarizing beam splitter (PBS) to split radiation diffracted by the sensor target into radiation with a first polarization state and radiation with a second polarization state, wherein the first polarization state is orthogonal to the second polarization state, and wherein the sensor is configured such that after passing the polarizing beam splitter radiation with the first polarization state has an optical path difference relative to radiation with the second polarization state that is larger than the coherence length.
Abstract:
Described is a metrology system for determining a characteristic of interest relating to at least one structure on a substrate, and associated method. The metrology system comprises a processor being configured to computationally determine phase and amplitude information from a detected characteristic of scattered radiation having been reflected or scattered by the at least one structure as a result of illumination of said at least one structure with illumination radiation in a measurement acquisition, and use the determined phase and amplitude to determine the characteristic of interest.
Abstract:
A method including determining a type of structural asymmetry of the target from measured values of the target, and performing a simulation of optical measurement of the target to determine a value of an asymmetry parameter associated with the asymmetry type. A method including performing a simulation of optical measurement of a target to determine a value of an asymmetry parameter associated with a type of structural asymmetry of the target determined from measured values of the target, and analyzing a sensitivity of the asymmetry parameter to change in a target formation parameter associated with the target. A method including determining a structural asymmetry parameter of a target using a measured parameter of radiation diffracted by the target, and determining a property of a measurement beam of the target based on the structural asymmetry parameter that is least sensitive to change in a target formation parameter associated with the target.
Abstract:
A method including: obtaining a measurement of a metrology target on a substrate processed using a patterning process, the measurement having been obtained using measurement radiation; and deriving a parameter of interest of the patterning process from the measurement, wherein the parameter of interest is corrected by a stack difference parameter, the stack difference parameter representing an un-designed difference in physical configuration between adjacent periodic structures of the target or between the metrology target and another adjacent target on the substrate.