Abstract:
A method for data storage includes storing data in a group of memory cells, by encoding the data using at least an outer code and an inner code, and optionally inverting the encoded data prior to storing the encoded data in the memory cells. The encoded data is read from the memory cells, and inner code decoding is applied to the read encoded data to produce a decoding result. At least part of the read data is conditionally inverted, depending on the decoding result of the inner code.
Abstract:
A method for encoding includes receiving input data symbols to be encoded with an Error Correction Code (ECC) so as to produce a code word of the ECC including redundancy symbols. The input data symbols are applied first and second processing stages, such that the first processing stage performs a first polynomial division by a fixed-coefficient polynomial with a first degree of parallelism, and the second processing stage performs a second polynomial division by a configurable-coefficient polynomial with a second degree of parallelism that is smaller than the first degree of parallelism, so as to jointly produce the redundancy symbols.
Abstract:
A method in a memory that includes multiple analog memory cells arranged in a three-dimensional (3-D) configuration, includes identifying multiple groups of potentially-interfering memory cells that potentially cause interference to a group of target memory cells. Partial distortion components, which are inflicted by the respective groups of the potentially-interfering memory cells on the target memory cells, are estimated. The partial distortion components are progressively accumulated so as to produce an estimated composite distortion affecting the target memory cells, while retaining only the composite distortion and not the partial distortion components. The target memory cells are read, and the interference in the target memory cells is canceled based on the estimated composite distortion.
Abstract:
A method for data storage includes storing data in a group of memory cells, by encoding the data using at least an outer code and an inner code, and optionally inverting the encoded data prior to storing the encoded data in the memory cells. The encoded data is read from the memory cells, and inner code decoding is applied to the read encoded data to produce a decoding result. At least part of the read data is conditionally inverted, depending on the decoding result of the inner code.
Abstract:
A method for data storage includes encoding each of multiple data items individually using a first Error Correction Code (ECC) to produce respective encoded data items. The encoded data items are stored in a memory. The multiple data items are encoded jointly using a second ECC, so as to produce a code word of the second ECC, and only a part of the code word is stored in the memory. The stored encoded data items are recalled from the memory and the first ECC is decoded in order to reconstruct the data items. Upon a failure to reconstruct a given data item from a respective given encoded data item by decoding the first ECC, the given data item is reconstructed based on the part of the code word of the second ECC and on the encoded data items other than the given encoded data item.
Abstract:
Methods for Error Correction Code (ECC) decoding include producing syndromes from a set of bits, which represent data that has been encoded with the ECC. An Error Locator Polynomial (ELP) is generated based on the syndromes. At least some of the ELP roots are identified, and the errors indicated by these roots are corrected. Each syndrome may be produced by applying to the bits vector operations in a vector space. Each syndrome is produced by applying vector operations using a different basis of the vector space. The ELP may be evaluated on a given field element by operating on ELP coefficients using serial multipliers, wherein each serial multiplier performs a sequence of multiplication cycles and produces an interim result in each cycle. Responsively to detecting at least one interim result indicating that the given element is not an ELP root, the multiplication cycles are terminated before completion of the sequence.
Abstract:
A method for encoding includes receiving input data symbols to be encoded with an Error Correction Code (ECC) so as to produce a code word of the ECC including redundancy symbols. The input data symbols are applied first and second processing stages, such that the first processing stage performs a first polynomial division by a fixed-coefficient polynomial with a first degree of parallelism, and the second processing stage performs a second polynomial division by a configurable-coefficient polynomial with a second degree of parallelism that is smaller than the first degree of parallelism, so as to jointly produce the redundancy symbols.
Abstract:
A method for decoding an Error Correction Code (ECC) includes accepting coefficients, including at least first and second coefficients, of an Error Locator Polynomial (ELP) that is defined over a vector space and has at least one root that is indicative of a location of an error in a set of bits, which represent data that has been encoded with the ECC. The first coefficient is represented using a first basis of the vector space, and the second coefficient is represented using a second basis of the vector space, different from the first basis. Using processing circuitry, the root of the ELP is identified by applying algebraic operations to the coefficients, such that the algebraic operations are applied to the first coefficient using the first basis, and to the second coefficient using the second basis. The error is corrected responsively to the identified root of the ELP.
Abstract:
Apparatus for encoding includes a first processing stage, which is configured to filter input data with a first set of coefficients belonging to a first generator polynomial representing a first ECC, to produce a first output. A second processing stage is configured to filter the first output using a second set of coefficients belonging to a quotient polynomial, which is defined as a quotient of a second generator polynomial, representing a second ECC, divided by the first generator polynomial, to produce a second output. Ancillary circuitry has first and second operational modes and is coupled to the first and second processing stages so as to generate a first redundancy output corresponding to the first ECC based on the first output when operating in the first mode, and to generate a second redundancy output corresponding to the second ECC based on the second output when operating in the second mode.
Abstract:
Methods for Error Correction Code (ECC) decoding include producing syndromes from a set of bits, which represent data that has been encoded with the ECC. An Error Locator Polynomial (ELP) is generated based on the syndromes. At least some of the ELP roots are identified, and the errors indicated by these roots are corrected. Each syndrome may be produced by applying to the bits vector operations in a vector space. Each syndrome is produced by applying vector operations using a different basis of the vector space. The ELP may be evaluated on a given field element by operating on ELP coefficients using serial multipliers, wherein each serial multiplier performs a sequence of multiplication cycles and produces an interim result in each cycle. Responsively to detecting at least one interim result indicating that the given element is not an ELP root, the multiplication cycles are terminated before completion of the sequence.