Abstract:
In some embodiments, a system is provided that includes (1) a loading position; (2) a drying position; (3) a movable tank configured to (a) hold at least one substrate; (b) hold a cleaning chemistry so as to expose a substrate within the movable tank to the cleaning chemistry; and (c) translate between the loading position and the drying position; and (4) a drying station located at the drying position and configured to rinse and dry a substrate as the substrate is unloaded from the movable tank when the movable tank is at the drying position. Numerous other aspects are provided.
Abstract:
An anneal module for annealing semiconductor material wafers and similar substrates reduces particle contamination and oxygen ingress while providing uniform heating including for 500° C. processes. The anneal module may include a process chamber formed in a metal body having internal cooling lines. A hot plate has a pedestal supported on a thermal choke on the body. A gas distributor in the lid over the hot plate flows gas uniformly over the wafer. A transfer mechanism moves a hoop to shift the wafer between the hot plate and a cold plate.
Abstract:
Processes and systems for electrochemical deposition of a multi-component solder by processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids.
Abstract:
Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.