摘要:
Process for preparing tricyclodecanedialdehyde by hydroformylation of dicyclopentadiene by means of a CO/H2 mixture at elevated temperature and under superatmospheric pressure in the presence of a rhodium catalyst which has not been modified by means of a ligand and is homogeneously dissolved in the hydroformylation medium, wherein the hydroformylation is carried out at a pressure of from 200 to 350 bar in at least two reaction zones, with a reaction temperature of from 80 to 120° C. being set in a first reaction zone and a reaction temperature of from 120 to 150° C. being set in a reaction zone following this reaction zone, with the proviso that the reaction temperature in the subsequent reaction zone is at least 5° C. higher than in the preceding reaction zone.
摘要:
A process for preparing C9-alcohols comprises a) providing a C4-hydrocarbon stream comprising butene and butane; b) subjecting the C4-hydrocarbon stream to oligomerization over an olefin oligomerization catalyst and fractionating the resulting reaction mixture to give an octene-containing stream and a butene-depleted C4-hydrocarbon stream; c) subjecting the butene-depleted C4-hydrocarbon stream to steam reforming or partial oxidation to give carbon monoxide and hydrogen; d) hydroformylating the octene-containing stream by means of carbon monoxide and hydrogen in the presence of a hydroformylation catalyst to form C9-aldehydes, where the carbon monoxide used and/or the hydrogen used originate at least in part from step c); and e) catalytically hydrogenating the C9-aldehydes by means of hydrogen. In a variant of the process, part of the butenes present in the C4-hydrocarbon stream are hydroformylated to form C5-aldehydes, these are subjected to an aldol condensation and the product of the aldol condensation is hydrogenated to form C10-alcohols. The process allows the C4-hydrocarbon stream used to be substantially utilized as material.
摘要:
The invention concerns a process for the preparation of 6-aminocapronitrile or 6-aminocapronitrile-hexamethylene diamine mixtures by: a) reacting 5-formylvaleronitrile with ammonia and hydrogen in the presence of hydrogenation catalysts selected from the group consisting of metals or metal compounds rhenium, copper and elements of group VIII of the periodic table of elements, a hydrogenation discharge product being obtained; and b) extracting from the hydrogenation discharge product 6-aminocapronitrile and optionally hexamethylene diamine, provided that the hydrogenation catalyst does not contain copper, nickel or copper and nickel as it's only components.
摘要:
Aldehydes with a higher number of carbon atoms and high selection are prepared by reacting olefins, in particular from petrochemical refinery products, by a hydroformylation with aldol condensation using a mixed catalyst of rhodium-carbonyl-phosphines and Mannich catalyst.
摘要:
Process for preparing primary amines which have at least one functional group of the formula (—CH2—NH2) and at least one further primary amino group by alcohol amination of starting materials having at least one functional group of the formula (—CH2—OH) and at least one further functional group (—X), where (—X) is selected from among hydroxyl groups and primary amino groups, by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
摘要:
The invention relates to a process for the preparation of polyalkylenepolyamines by catalyzed alcohol amination, in which(i) aliphatic aminoalcohols are reacted with one another or(ii) aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a catalyst.
摘要:
Preparing a primary amine by alcohol amination of alcohol with ammonia and elimination of water includes reacting, in a homogeneously catalyzed reaction, a mixture of alcohol, ammonia, nonpolar solvent, and catalyst, in a liquid phase, to obtain a product mixture. The process then includes phase separating the product mixture into a polar product phase and a nonpolar product phase, and separating off the nonpolar product phase. At least some of the nonpolar phase returns to the homogenously catalyzed reaction. The process further includes separating off amination product from the polar product phase. At least some of the catalyst is in the nonpolar phase, and the catalyst accumulates in the nonpolar phase.
摘要:
The present invention relates to a process for preparing formic acid by reacting carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, where a tertiary amine having a boiling point which is at least 5° C. higher than that of formic acid is used and a reaction mixture comprising the polar solvent, the formic acid/amine adducts, the tertiary amine and the catalyst is formed in the reaction in the hydrogenation reactor (I) and is discharged from the reactor as output (3).
摘要:
A process is proposed for production of formamides by reaction of carbon dioxide with hydrogen in a hydrogenation reactor I in the presence of a catalyst comprising an element from group 8, 9 or 10 of the periodic table, a tertiary amine comprising at least 6 carbon atoms per molecule, and also a polar solvent, to form formic acid-amine adducts as intermediates, which are subsequently reacted with ammonia or amines in a reactor to obtain a two-phase liquid reaction effluent from which the liquid phase enriched with the formamides is distillatively separated to recover the formamide.
摘要:
A process for preparing formic acid by reaction of carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols and also water, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, with work-up of the output (3) from the hydrogenation reactor (I) in a plurality of process steps, where a tertiary amine-comprising stream (13) from the work-up is used as selective solvent for the catalyst, is proposed.