Abstract:
4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g. hexakis amino or trisaminophenoxy-trisphenoxy-cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.
Abstract:
4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g. hexakis amino or trisaminophenoxy-trisphenoxy-cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yeilds and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.
Abstract:
Plasma-assisted methods and apparatus that use multiple radiation sources are provided. In one embodiment, a plasma is ignited by subjecting a gas in a radiation cavity to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, which may be passive or active. A controller can be used to delay activation of one radiation source with respect to another radiation source.
Abstract:
Methods and apparatus are provided for plasma-assisted gas production. In one embodiment, a gas, which includes at least one atomic or molecular species, can flow into a cavity (305). The gas can be subjected to electromagnetic radiation having a frequency less than about 333 GHz (optionally in the presence of a plasma catalyst) such that a plasma (310) forms in the cavity (305). A filter (315) capable of passing the atomic or molecular species, but preventing others from passing, can be in fluid communication with the cavity (305). In this way, the selected species can be extracted and collected, for storage or immediate use.
Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma for synthesizing carbon structures. In one embodiment, a method is provided for synthesizing a carbon structure including forming a plasma by subjecting a gas to electromagnetic radiation in the presence of a plasma catalyst and adding at least one carbonaceous material to the plasma to grow the carbon structures on a substrate. Various types of plasma catalysts are also provided.
Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma for at least partially decrystallizing a surface of an object. In one embodiment, a method is provided for decrystallizing a surface of an object by forming a plasma (such as by subjecting a gas to an amount of electromagnetic radiation, optionally in the presence of a plasma catalyst) and exposing the surface of the object to the plasma.
Abstract:
Apparatus and methods for plasma-assisted melting are provided. In one embodiment, a plasma-assisted melting method can include: (1) adding a solid to a melting region, (2) forming a plasma in a cavity by subjecting a gas to electromagnetic radiation having a frequency less than about 333 GHz in the presence of a plasma catalyst, wherein the cavity has a wall, (3) sustaining the plasma in the cavity such that energy from the plasma passes through the wall into the melting region and melts the solid into a liquid, and (4) collecting the liquid. Solids that can be melted consistent with this invention can include metals, such as metal ore and scrap metal. Various plasma catalysts are also provided.
Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma for various plasma processes and treatments. Such treatments include cleaning and sterilizing parts. In some embodiments, a plasma is ignited by subjecting a gas in a multi-mode processing cavity to electromagnetic radiation having a frequency between about 1 MHz and about 333 GHz in the presence of a plasma catalyst. A part can be cleaned by, for example, inserting hydrogen into the plasma and exposing the part to the hydrogen-enriched plasma. A part can be sterilized by heating the part with the plasma.
Abstract:
A method for cleaning a plasma CVD reactor includes, during a cleaning cycle, (i) providing cleaning active species derived from a cleaning gas in the plasma CVD reactor, and (ii) generating a hydrogen plasma in an interior of the plasma CVD reactor to clean the interior of the reactor.
Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma (615) for coating objects (250). In one embodiment, a method of coating a surface of an object (250) includes forming a plasma (615) in a cavity (230) by subjecting a gas to electromagnetic radiation in the presence of a plasma catalyst (240) and adding at least one coating material (510) to the plasma (615) by energizing the material (510) with, for example, a laser (500). The material (510) is allowed to deposit on the surface of the object (250) to form a coating. Various types of plasma (240) catalysts are also provided.