Abstract:
A metrology pattern layout for a circuit structure is provided, the metrology pattern layout including a plurality of quadrants, in which quadrants a first wafer measurement pattern, a second wafer measurement pattern, a reticle registration pattern, and a reticle measurement pattern may be arranged to facilitate correlation of reticle metrology data with wafer metrology data. The reticle registration pattern may further include one or more outermost structural elements designed to protect other structural elements within the reticle measurement pattern from being modified in an optical proximity correction process. A method of optical proximity correction process is provided, in which a reticle measurement pattern may be obtained and classified to add or modify a rule set of the optical proximity correction process.
Abstract:
A method includes receiving a layout of an integrated circuit that includes a plurality of layers, one of the layers is selected and one or more tile number values are provided. A die area of the integrated circuit is partitioned into a plurality of tiles on the basis of the tile number values. It is determined, on the basis of the layout, if a portion of the selected one of the layers in the tile has an available space for inclusion of a test cell or a dummy cell, and a label indicative of a result is assigned to the tile. It is determined, on the basis of the labels assigned, if one or more space availability criteria are fulfilled and, if fulfilled, the labels are used for placing at least one of one or more test cells and one or more dummy cells in the layout.
Abstract:
A mask is disclosed which includes a plurality of first phase shift regions disposed on a first side of the mask, and a plurality of second phase shift regions disposed on a second side of the mask. The first phase shift regions and second phase shift regions may be alternating phase shift regions in which phase shift of the first phase shift regions is out of phase, for instance by 180 degrees, from phase shift of the second phase shift regions. A method for forming the mask, and a semiconductor device fabrication method using the mask is also disclosed.
Abstract:
A method includes receiving a layout of an integrated circuit that includes a plurality of layers, one of the layers is selected and one or more tile number values are provided. A die area of the integrated circuit is partitioned into a plurality of tiles on the basis of the tile number values. It is determined, on the basis of the layout, if a portion of the selected one of the layers in the tile has an available space for inclusion of a test cell or a dummy cell, and a label indicative of a result is assigned to the tile. It is determined, on the basis of the labels assigned, if one or more space availability criteria are fulfilled and, if fulfilled, the labels are used for placing at least one of one or more test cells and one or more dummy cells in the layout.
Abstract:
A method of forming dummy structures and an overlay mark protection zone over an active layer zone based on the shape of an overlay mark and the resulting device are provided. Embodiments include determining a size and a shape of an overlay mark; determining a size and a shape of an overlay mark protection zone based on the shape of the overlay mark; determining a shape of a plurality of dummy structures based on the shape of the overlay mark; determining a size and a shape of an active layer zone based on the size and the shape of the overlay mark and the plurality of dummy structures; forming the active layer zone in an active layer of a semiconductor substrate; forming the overlay mark and the plurality of dummy structures over the active layer zone in a poly layer of the semiconductor substrate; and planarizing the poly layer.
Abstract:
Fabrication of through-substrate via (TSV) structures is facilitated by: forming at least one stress buffer within a substrate; forming a through-substrate via contact within the substrate, wherein the through-substrate via structure and the stress buffer(s) are disposed adjacent to or in contact with each other; and where the stress buffer(s) includes a configuration or is disposed at a location relative to the through-substrate via conductor, at least in part, according to whether the TSV structure is an isolated TSV structure, a chained TSV structure, or an arrayed TSV structure, to customize stress alleviation by the stress buffer(s) about the through-substrate via conductor based, at least in part, on the type of TSV structure.