Abstract:
Integrated circuits, methods of forming integrated circuits, and methods of sensing voiding between a through-semiconductor via and a subsequent layer that overlies the through-semiconductor via in integrated circuits are provided. An exemplary method of forming an integrated circuit includes forming a plurality of semiconductor devices on a semiconductor substrate. A through-semiconductor via is formed in the semiconductor substrate, and an interlayer dielectric layer is formed that overlies the through-semiconductor via and the plurality of semiconductor devices. A first interconnect via is embedded within the interlayer dielectric layer, and a second interconnect via is embedded within the interlayer dielectric layer. The first interconnect via and the second interconnect via are in electrical communication with the through-semiconductor via at spaced locations from each other on the through-semiconductor via.
Abstract:
A mask is disclosed which includes a plurality of first phase shift regions disposed on a first side of the mask, and a plurality of second phase shift regions disposed on a second side of the mask. The first phase shift regions and second phase shift regions may be alternating phase shift regions in which phase shift of the first phase shift regions is out of phase, for instance by 180 degrees, from phase shift of the second phase shift regions. A method for forming the mask, and a semiconductor device fabrication method using the mask is also disclosed.
Abstract:
Integrated circuits and methods of forming integrated circuits are provided herein, in which a plurality of semiconductor devices is formed on a semiconductor substrate. At least one through-semiconductor via is formed in the semiconductor substrate and an interlayer dielectric layer is formed overlying the at least one through-semiconductor via and the plurality of semiconductor devices. A first pattern is etched in the interlayer dielectric layer over the at least one through-semiconductor via, and a second pattern different from the first pattern is etched in the interlayer dielectric layer over the same through-semiconductor via as the first pattern. At least one interconnect via is embedded within the interlayer dielectric layer, in electrical communication with one of the at least one through-semiconductor vias. A metal-containing material is deposited in the first pattern and the second pattern to form a first metal layer in electrical communication with the at least one interconnect via.
Abstract:
Circuit structures and methods of fabrication are provided with enhanced electrical connection between, for instance, a first metal level and a contact surface of a conductive structure. Enhanced electrical connection is achieved using a plurality of contact vias which are differently-sized, and disposed over and electrically coupled to the contact surface. The differently-sized contact vias include at least one center region contact via disposed over a center region of the contact surface, and at least one peripheral region contact via disposed over a peripheral region of the contact surface, where the at least one center region contact via is larger than the at least one peripheral region contact via.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress, thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
Integrated circuits, methods of forming integrated circuits, and methods of sensing voiding between a through-semiconductor via and a subsequent layer that overlies the through-semiconductor via in integrated circuits are provided. An exemplary method of forming an integrated circuit includes forming a plurality of semiconductor devices on a semiconductor substrate. A through-semiconductor via is formed in the semiconductor substrate, and an interlayer dielectric layer is formed that overlies the through-semiconductor via and the plurality of semiconductor devices. A first interconnect via is embedded within the interlayer dielectric layer, and a second interconnect via is embedded within the interlayer dielectric layer. The first interconnect via and the second interconnect via are in electrical communication with the through-semiconductor via at spaced locations from each other on the through-semiconductor via.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress, thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
A mask is disclosed which includes a plurality of first phase shift regions disposed on a first side of the mask, and a plurality of second phase shift regions disposed on a second side of the mask. The first phase shift regions and second phase shift regions may be alternating phase shift regions in which phase shift of the first phase shift regions is out of phase, for instance by 180 degrees, from phase shift of the second phase shift regions. A method for forming the mask, and a semiconductor device fabrication method using the mask is also disclosed.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress, thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
Fabrication of through-substrate via (TSV) structures is facilitated by: forming at least one stress buffer within a substrate; forming a through-substrate via contact within the substrate, wherein the through-substrate via structure and the stress buffer(s) are disposed adjacent to or in contact with each other; and where the stress buffer(s) includes a configuration or is disposed at a location relative to the through-substrate via conductor, at least in part, according to whether the TSV structure is an isolated TSV structure, a chained TSV structure, or an arrayed TSV structure, to customize stress alleviation by the stress buffer(s) about the through-substrate via conductor based, at least in part, on the type of TSV structure.