Abstract:
A replacement gate structure that includes a conductive metal gate electrode is formed in a gate cavity, wherein the gate cavity is formed in a dielectric material formed above an active region of a semiconductor device. An upper surface of the conductive metal gate electrode and an upper surface of the dielectric material are planarized during a common planarization process, and a protective conductive cap is selectively formed on and in direct physical contact with the planarized upper surface of the conductive metal gate electrode. A contact structure is formed in a dielectric insulating layer formed above the replacement gate structure, the contact structure directly contacting the protective conductive cap.
Abstract:
A replacement gate structure that includes a conductive metal gate electrode is formed in a gate cavity, wherein the gate cavity is formed in a dielectric material formed above an active region of a semiconductor device. An upper surface of the conductive metal gate electrode and an upper surface of the dielectric material are planarized during a common planarization process, and a protective conductive cap is selectively formed on and in direct physical contact with the planarized upper surface of the conductive metal gate electrode. A contact structure is formed in a dielectric insulating layer formed above the replacement gate structure, the contact structure directly contacting the protective conductive cap.
Abstract:
Embodiments of the present invention provide an improved shallow trench isolation structure and method of fabrication. The shallow trench isolation cavity includes an upper region having a sigma cavity shape, and a lower region having a substantially rectangular cross-section. The lower region is filled with a first material having good gap fill properties. The sigma cavity is filled with a second material having good stress-inducing properties. In some embodiments, source/drain stressor cavities may be eliminated, with the stress provided by the shallow trench isolation structure. In other embodiments, the stress from the shallow trench isolation structure may be used to complement or counteract stress from a source/drain stressor region of an adjacent transistor. This enables precise tuning of channel stress to achieve a desired carrier mobility for a transistor.
Abstract:
Embodiments herein provide approaches for forming a set of replacement fins in a semiconductor device. Specifically, a device is formed having a set of replacement fins over a substrate, each of the set of replacement fins comprising a first section separated from a second section by a liner layer, the first section having a lower dopant centration than a dopant concentration of the second section. In one embodiment, sequential epitaxial deposition with insitu doping is used to form the second section, the liner layer, and then the first section of each of the set of replacement fins. In another embodiment, the second section is formed over the substrate, and the liner layer is formed through a carbon implant. The first section is then epitaxially formed over the liner layer, and serves as the fin channel. As provided, upward dopant diffusion is suppressed, resulting in the first section of each fin being maintained with low doping so that the fin channel is fully depleted channel during device operation.
Abstract:
A FinFET has shaped epitaxial structures for the source and drain that are electrically isolated from the substrate. Shaped epitaxial structures in the active region are separated from the substrate in the source and drain regions while those in the channel region remain. The gaps created by the separation in the source and drain are filled with electrically insulating material. Prior to filling the gaps, defects created by the separation may be reduced.
Abstract:
Embodiments of the invention provide a semiconductor structure including a finFET having an epitaxial semiconductor region in direct physical contact with a plurality of fins, wherein the epitaxial semiconductor region traverses an insulator layer and is in direct physical contact with the semiconductor substrate. The gate of the finFET is disposed over an insulator layer, such as a buried oxide layer. Methods of forming the semiconductor structure are also included.
Abstract:
A device includes a plurality of trenches and fins defined in a substantially un-doped layer of semiconducting material, a gate insulation layer positioned on the fins and on the bottom of the trenches, a gate electrode and a device isolation structure. One method disclosed herein involves identifying a top width of each of a plurality of fins and a depth of a plurality of trenches to be formed in a substantially un-doped layer of semiconducting material, wherein, during operation, the device is adapted to operate in at least three distinguishable conditions depending upon a voltage applied to the device, performing at least one process operation to define the trenches and fins in the layer of semiconducting material, forming a gate insulation layer on the fins and on a bottom of the trenches and forming a gate electrode above the gate insulation layer.
Abstract:
Methods of manufacturing semiconductor integrated circuits having FinFET structures with epitaxially formed source and drain regions are disclosed. A method of fabricating an integrated circuit includes forming a plurality of silicon fin structures on a semiconductor substrate, epitaxially growing a silicon material on the fin structures, wherein a merged source/drain region is formed on the fin structures, and anisotropically etching at least one of the merged source drain regions to form an un-merged source/drain region.
Abstract:
A method of forming a FinFET device involves performing an epitaxial growth process to form a layer of semiconducting material on a semiconducting substrate, wherein a first portion of the layer of semiconducting material will become a fin structure for the FinFET device and wherein a plurality of second portions of the layer of semiconducting material will become source/drain structures of the FinFET device, forming a gate insulation layer around at least a portion of the fin structure and forming a gate electrode above the gate insulation layer.
Abstract:
A device includes a plurality of trenches and fins defined in a substantially un-doped layer of semiconducting material, a gate insulation layer positioned on the fins and on the bottom of the trenches, a gate electrode and a device isolation structure. One method disclosed herein involves identifying a top width of each of a plurality of fins and a depth of a plurality of trenches to be formed in a substantially un-doped layer of semiconducting material, wherein, during operation, the device is adapted to operate in at least three distinguishable conditions depending upon a voltage applied to the device, performing at least one process operation to define the trenches and fins in the layer of semiconducting material, forming a gate insulation layer on the fins and on a bottom of the trenches and forming a gate electrode above the gate insulation layer.