摘要:
Various embodiments of the present invention are directed to sensor networks and to methods for fabricating sensor networks. In one aspect, a sensor network includes a processing node (110, 310), and one or more sensor lines (102,202,302) optically coupled to the processing node. Each sensor line comprises a waveguide (116,216,316), and one or more sensor nodes (112,210). Each sensor node is optically coupled to the waveguide and configured to measure one or more physical conditions and, encode measurement results in one or more wavelengths of light carried by the waveguide to the processing node.
摘要:
A semiconductor device and method thereof. The example method may include forming a semiconductor device, including forming a first layer on a substrate, the first layer including aluminum nitride (AlN), forming a second layer by oxidizing a surface of the first layer and forming a third layer on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes. The example semiconductor device may include a substrate including a first layer, the first layer including aluminum nitride (AlN), a second layer formed by oxidizing a surface of the first layer and a third layer formed on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes.
摘要:
A memristor having an active region having a first electrode, a second electrode, and a nanostructure connecting the first electrode with the second electrode. The nanostructure includes a generally insulating material configured to have an electrically conductive channel formed in the material. The nanostructure forms the active region and has a length and a thickness, where the length is substantially equivalent to a distance extending from the first electrode to the second electrode along the nanostructure and the thickness is a distance across the nanostructure substantially perpendicular to the length of the nanostructure. The length of the nanostructure is substantially greater than the thickness of the nanostructure.
摘要:
A semiconductor device including a substrate, a P-MOS single crystal TFT formed on the substrate, and an N-MOS single crystal TFT formed on the P-MOS single crystal TFT. The source region of the P-MOS single crystal TFT and the source region of the N-MOS single crystal TFT may be connected to each other. The P-MOS single crystal TFT and the N-MOS single crystal TFT may share a common gate. Also, the P-MOS single crystal TFT may include a single crystal silicon layer with a crystal plane of (100) and a crystal direction of . The N-MOS single crystal TFT may include a single crystal silicon layer having the same crystal direction as the single crystal silicon layer of the P-MOS single crystal TFT and having a tensile stress greater than the single crystal silicon layer of the P-MOS single crystal TFT.
摘要:
A silicon nanowire substrate having a structure in which a silicon nanowire film having a fine line-width is formed on a substrate, a method of manufacturing the same, and a method of manufacturing a thin film transistor using the same. The method of manufacturing the silicon nanowire substrate includes preparing a substrate, forming an insulating film on the substrate, forming a silicon film on the insulating film, patterning the insulating film and the silicon film into a strip shape, reducing the line-width of the insulating film by undercut etching at least one lateral side of the insulating film, and forming a self-aligned silicon nanowire film on an upper surface of the insulating film by melting and crystallizing the silicon film.
摘要:
A semiconductor device includes a transistor. The transistor includes a substrate having an inclined surface, a first upper surface extending from a lower portion of the inclined surface, and a second upper surface extending from an upper end of the inclined surface. A gate stack structure is formed on the inclined surface and includes a gate electrode. A first impurity region formed on one of the first and second upper surfaces contacts the gate stack structure. A second impurity region formed on the second upper surface contacts the gate stack structure. A channel between the first and second impurity regions is formed along the inclined surface in a crystalline direction.
摘要:
A method of manufacturing a nanowire, a method of manufacturing a semiconductor apparatus including a nanowire and a semiconductor apparatus formed from the same are provided. The method of manufacturing a semiconductor apparatus may include forming a material layer pattern on a substrate, forming a first insulating layer on the material layer pattern, a first nanowire forming layer and a top insulating layer on the substrate, wherein a total depth of the first insulating layer and the first nanowire forming layer may be formed to be smaller than a depth of the material layer pattern, sequentially polishing the top insulating layer, the first nanowire forming layer and the first insulating layer so that the material layer pattern is exposed, exposing part of the first nanowire forming layer to form an exposed region and forming a single crystalline nanowire on an exposed region of the first nanowire forming layer.
摘要:
Provided are a fin structure and a method of manufacturing a fin transistor adopting the fin structure. A plurality of mesa structures including sidewalls are formed on the substrate. A semiconductor layer is formed on the mesa structures. A capping layer is formed on the semiconductor layer. Thus, the semiconductor layer is protected by the capping layer and includes a portion which is to be formed as a fin structure. A portion of an upper portion of the capping layer is removed by planarizing, and thus a portion of the semiconductor layer on upper surfaces of the mesa structures is removed. As a result, fin structures are formed on sides of the mesa structures to be isolated from one another. Therefore, a fin structure having a very narrow width can be formed, and a thickness and a location of the fin structure can be easily controlled.
摘要:
Provided are a method of forming a single crystalline silicon layer, a structure including the same, and method of fabricating a thin film transistor (“TFT”) using the same. The method of forming the single crystalline silicon layer includes forming a silicon nitride layer on a substrate, forming an insulating layer on the silicon nitride layer, forming a hole in the insulating layer to a predetermined dimension, depositing a first silicon layer on an exposed bottom of the hole using a selective deposition process, depositing a second silicon layer on the insulating layer and the first silicon layer formed in the hole, and crystallizing the second silicon layer using a thermal process. In this method, a high-quality single crystalline silicon layer can be obtained.
摘要:
Semiconductor-on-insulator (SOI) structures, semiconductor devices using the same and methods of manufacturing the same, and more particularly, to a structure with a single-crystalline (for example, germanium (x-Ge)) layer on an insulating layer, semiconductor devices using the same, and methods of manufacturing the same. The SOI structure may include a single-crystalline substrate formed of a first semiconductor material, a first insulating layer formed on the substrate and having at least one window exposing a portion of the substrate, a first epitaxial growth region formed on a surface of the substrate exposed by the window and formed of at least one of the first semiconductor material and a second semiconductor material, and a first single-crystalline layer formed on the first insulating layer and the first epitaxial growth region and formed of the second semiconductor material, and crystallized using a surface of the first epitaxial growth region as a seed layer for crystallization.