Abstract:
An apparatus and method are described for distributed snoop filtering. For example, one embodiment of a processor comprises: a plurality of cores to execute instructions and process data; first snoop logic to track a first plurality of cache lines stored in a mid-level cache (“MLC”) accessible by one or more of the cores, the first snoop logic to allocate entries for cache lines stored in the MLC and to deallocate entries for cache lines evicted from the MLC, wherein at least some of the cache lines evicted from the MLC are retained in a level 1 (L1) cache; and second snoop logic to track a second plurality of cache lines stored in a non-inclusive last level cache (NI LLC), the second snoop logic to allocate entries in the NI LLC for cache lines evicted from the MLC and to deallocate entries for cache lines stored in the MLC, wherein the second snoop logic is to store and maintain a first set of core valid bits to identify cores containing copies of the cache lines stored in the NI LLC.
Abstract:
A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state
Abstract:
In one embodiment, the present invention includes a multicore processor having a plurality of cores, a shared cache memory, an integrated input/output (IIO) module to interface between the multicore processor and at least one IO device coupled to the multicore processor, and a caching agent to perform cache coherency operations for the plurality of cores and the IIO module. Other embodiments are described and claimed.
Abstract:
Disclosed herein is a caching agent for preventing deadlock in a processor. The caching agent includes a receiver configured to receive a request from a core of the processor. The caching agent includes ingress logic coupled to the receiver to determine that the request is potentially a cacheable request. The ingress logic is to determine that the request does not deplete an available coherence resource. The ingress logic is to allow the request to be processed in response to the determination that the request does not deplete the available coherence resource.
Abstract:
In one embodiment, the present invention includes a multicore processor having a plurality of cores, a shared cache memory, an integrated input/output (IIO) module to interface between the multicore processor and at least one IO device coupled to the multicore processor, and a caching agent to perform cache coherency operations for the plurality of cores and the IIO module. Other embodiments are described and claimed.