摘要:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.
摘要:
An inspection apparatus and a semiconductor device manufacturing method using the same. The inspection apparatus is used for defect inspection, line width measurement, surface potential measurement or the like of a sample such as a wafer. In the inspection apparatus, a plurality of charged particles is delivered from a primary optical system to the sample, and secondary charged particles emitted from the sample are separated from the primary optical system and introduced through a secondary optical system to a detector. Irradiation of the charged particles is conducted while moving the sample. Irradiation spots of the charged particles are arranged by N rows along a moving direction of the sample and by M columns along a direction perpendicular thereto. Every row of the irradiation spots of the charged particles is shifted successively by a predetermined amount in a direction perpendicular to the moving direction of the sample.
摘要:
A substrate inspection apparatus 1-1 (FIG. 1) of the present invention performs the following steps of: carrying a substrate “S” to be inspected into an inspection chamber 23-1; maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and/or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.
摘要:
An inspection apparatus and a semiconductor device manufacturing method using the same. The inspection apparatus is used for defect inspection, line width measurement, surface potential measurement or the like of a sample such as a wafer. In the inspection apparatus, a plurality of charged particles is delivered from a primary optical system to the sample, and secondary charged particles emitted from the sample are separated from the primary optical system and introduced through a secondary optical system to a detector. Irradiation of the charged particles is conducted while moving the sample. Irradiation spots of the charged particles are arranged by N rows along a moving direction of the sample and by M columns along a direction perpendicular thereto. Every row of the irradiation spots of the charged particles is shifted successively by a predetermined amount in a direction perpendicular to the moving direction of the sample.
摘要:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.
摘要:
An inspection apparatus and a semiconductor device manufacturing method using the same. The inspection apparatus is used for defect inspection, line width measurement, surface potential measurement or the like of a sample such as a wafer. In the inspection apparatus, a plurality of charged particles is delivered from a primary optical system to the sample, and secondary charged particles emitted from the sample are separated from the primary optical system and introduced through a secondary optical system to a detector. Irradiation of the charged particles is conducted while moving the sample. Irradiation spots of the charged particles are arranged by N rows along a moving direction of the sample and by M columns along a direction perpendicular thereto. Every row of the irradiation spots of the charged particles is shifted successively by a predetermined amount in a direction perpendicular to the moving direction of the sample.
摘要:
An electron beam apparatus such as a sheet beam based testing apparatus has an electron-optical system for irradiating an object under testing with a primary electron beam from an electron beam source, and projecting an image of a secondary electron beam emitted by the irradiation of the primary electron beam, and a detector for detecting the secondary electron beam image projected by the electron-optical system; specifically, the electron beam apparatus comprises beam generating means 2004 for irradiating an electron beam having a particular width, a primary electron-optical system 2001 for leading the beam to reach the surface of a substrate 2006 under testing, a secondary electron-optical system 2002 for trapping secondary electrons generated from the substrate 2006 and introducing them into an image processing system 2015, a stage 2003 for transportably holding the substrate 2006 with a continuous degree of freedom equal to at least one, a testing chamber for the substrate 2006, a substrate transport mechanism for transporting the substrate 2006 into and out of the testing chamber, an image processing analyzer 2015 for detecting defects on the substrate 2006, a vibration isolating mechanism for the testing chamber, a vacuum system for holding the testing chamber at a vacuum, and a control system 2017 for displaying or storing positions of defects on the substrate 2006.
摘要:
An electron beam apparatus such as a sheet beam based testing apparatus has an electron-optical system for irradiating an object under testing with a primary electron beam from an electron beam source, and projecting an image of a secondary electron beam emitted by the irradiation of the primary electron beam, and a detector for detecting the secondary electron beam image projected by the electron-optical system. Specifically, the electron beam apparatus comprises beam generating means 2004 for irradiating an electron beam having a particular width, a primary electron-optical system 2001 for leading the beam to reach the surface of a substrate 2006 under testing, a secondary electron-optical system 2002 for trapping secondary electrons generated from the substrate 2006 and introducing them into an image processing system 2015, a stage 2003 for transportably holding the substrate 2006 with a continuous degree of freedom equal to at least one, a testing chamber for the substrate 2006, a substrate transport mechanism for transporting the substrate 2006 into and out of the testing chamber, an image processing analyzer 2015 for detecting defects on the substrate 2006, a vibration isolating mechanism for the testing chamber, a vacuum system for holding the testing chamber at a vacuum, and a control system 2017 for displaying or storing positions of defects on the substrate 2006.
摘要:
A substrate inspection apparatus 1-1 (FIG. 1) of the present invention performs the following steps of: carrying a substrate “S” to be inspected into an inspection chamber 23-1; maintaining a vacuum in said inspection chamber; isolating said inspection chamber from a vibration; moving successively said substrate by means of a stage 26-1 with at least one degree of freedom; irradiating an electron beam having a specified width; helping said electron beam reach to a surface of said substrate via a primary electron optical system 10-1; trapping secondary electrons emitted from said substrate via a secondary electron optical system 20-1 and guiding it to a detecting system 35-1; forming a secondary electron image in an image processing system based on a detection signal of a secondary electron beam obtained by said detecting system; detecting a defective location in said substrate based on the secondary electron image formed by said image processing system; indicating and/or storing said defective location in said substrate by CPU 37-1; and taking said completely inspected substrate out of the inspection chamber. Thereby, the defect inspection on the substrate can be performed successively with high level of accuracy and efficiency as well as with higher throughput.
摘要:
A film thickness measuring method and apparatus sets forth a spectral reflectance ratio S(&lgr;) at a spot where the film to be measured is present and a spectral reflectance ratio R(&lgr;) at a spot where the film to be measured is not present are measured to determine a spectral reflectance ratio Rmeas(&lgr;)=S(&lgr;)/R(&lgr;). A theoretical value Rcalc(&lgr;) of the spectral reflectance ratio at an assumed film thickness d is determined, and an evaluation value Ed is determined from the total sum of differences between the value of Rmeas(&lgr;) and the value of Rcalc(&lgr;). Assuming that the spectral reflectance ratio Rmeas(&lgr;e) of the film is 1 (Rmeas(&lgr;e)=1), an evaluation value Enewd is determined. The film thickness d is changed to determine an evaluation function Enew(d). An evaluation function ratio PE(d) is determined from E(d)/Enew(d), and a film thickness d that gives a minimum value of the ratio PE(d) is determined to be a measured film thickness D.