摘要:
A method for detecting an error in data stored in configuration SRAM and user assignable SRAM in a FPGA comprises the steps of providing a serial data stream into the FPGA from an external source, loading data from the serial data stream into the configuration SRAM in response to address signals generated by row column counters, loading data from the serial data stream into the user assignable SRAM in response to address signals generated by row and column counters, loading a seed and signature from the serial data stream into a cyclic redundancy checking circuit, cycling data out of the configuration SRAM and the user assignable SRAM by the row and column counters; performing error checking on the data that has been cycled out of the configuration SRAM and out of the user assignable SRAM by the cyclic redundancy checking circuit, and generating an error signal when an error is detected by the error checking circuit.
摘要:
An system-on-a-chip integrated circuit has a field programmable gate array core having logic clusters, static random access memory modules, and routing resources, a field programmable gate array virtual component interface translator having inputs and outputs, wherein the inputs are connected to the field programmable gate array core, a microcontroller, a microcontroller virtual component interface translator having input and outputs, wherein the inputs are connected to the microcontroller, a system bus connected to the outputs of the field programmable gate array virtual component interface translator and also to the outputs of said microcontroller virtual component interface translator, and direct connections between the microcontroller and the routing resources of the field programmable gate array core.
摘要:
An SRAM bus architecture includes pass-through interconnect conductors. Each of the pass-through interconnect conductors is connected to routing channels of the general interconnect architecture of the FPGA through an element which includes a pass transistor connected in parallel with a tri-state buffer. The pass transistors and tri-state buffers are controlled by configuration SRAM bits. Some of the pass-through interconnect conductors are connected by programmable elements to the address, data and control signal lines of the SRAM blocks, while other pass through the SRAM blocks with out being further connected to the SRAM bussing architecture.
摘要:
A method for detecting an error in data stored in configuration SRAM and user assignable SRAM in a FPGA comprises the steps of providing a serial data stream into the FPGA from an external source, loading data from the serial data stream into the configuration SRAM in response to address signals generated by row column counters, loading data from the serial data stream into the user assignable SRAM in response to address signals generated by row and column counters, loading a seed and signature from the serial data stream into a cyclic redundancy checking circuit, cycling data out of the configuration SRAM and the user assignable SRAM by the row and column counters; performing error checking on the data that has been cycled out of the configuration SRAM and out of the user assignable SRAM by the cyclic redundancy checking circuit, and generating an error signal when an error is detected by the error checking circuit.
摘要:
The output buffer circuit according to the present invention is connected to an I/O pad of the integrated circuit. The output buffer circuit includes an output totem pole, a level shifter and enable logic. The output totem pole has a first input connected to the level shifter and a second input connected to the enable logic. The output of the totem pole is connected to an I/O pad. The totem pole includes a pullup transistor connected to 3.3 volt Vcc and a pulldown transistor connected to ground. In a first embodiment of the invention, the pullup transistor in the totem pole is an N-channel MOS transistor, and in a second embodiment of the invention, the pullup transistor in the totem pole is a P-channel MOS transistor formed in an N-well tied to the 5 volt Vcc. In the first embodiment of the present invention, the N-Channel MOS pullup transistor is turned on by a 5 volt signal from the level shifter. In the second embodiment of the present invention, the P-Channel MOS pullup transistor is turned on by a ground level signal from the level shifter. The enable logic drives the output of the totem pole in response to input signals to the enable logic. The inputs to the enable logic are a Data input, a Global enable input and an Output enable input.
摘要:
A user-programmable gate array architecture includes an array of logic function modules which may comprise one or more combinatorial and/or sequential logic circuits. An interconnect architecture comprising a plurality of horizontal and vertical general interconnect channels, each including a plurality of interconnect conductors some of which may be segmented, is imposed on the array. Individual ones of the interconnect conductors are connectable to each other and to the inputs and outputs of the logic function modules by user-programmable interconnect elements. A local interconnect architecture comprising local interconnect channels is also imposed on the array. Each local interconnect channel includes a plurality of local interconnect conductors and runs between pairs of adjacent ones of the logic function modules.
摘要:
A two-transistor non-volatile memory cell is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory transistor well. A memory transistor including spaced-apart source and drain regions is formed within the memory-transistor well. A switch transistor including spaced-apart source and drain regions is formed within the switch-transistor well region. A floating gate is insulated from and self aligned with the source and drain regions of the memory transistor and switch transistor. A control gate is disposed above and aligned to the floating gate and with the source and drain regions of the memory transistor and the switch transistor.
摘要:
A programmable system-on-a-chip integrated circuit device comprises a programmable logic block, a non-volatile memory block, an analog sub-system, an analog input/output circuit block, and a digital input/output circuit block. A programmable interconnect architecture includes programmable elements and interconnect conductors. Ones of the programmable elements are coupled to the programmable logic block, the non-volatile memory block, the analog sub-system, the analog input/output circuit block, the digital input/output circuit block, and to the interconnect conductors, such that inputs and outputs of the programmable logic block, the non-volatile memory block, the analog sub-system, the analog input/output circuit block, and the digital input/output circuit block can be programmably coupled to one another.
摘要:
A two-transistor non-volatile memory cell is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory transistor well. A memory transistor including spaced-apart source and drain regions is formed within the memory-transistor well. A switch transistor including spaced-apart source and drain regions is formed within the switch-transistor well region. A floating gate is insulated from and self aligned with the source and drain regions of the memory transistor and switch transistor. A control gate is disposed above and aligned to the floating gate and with the source and drain regions of the memory transistor and the switch transistor.
摘要:
A two-transistor non-volatile memory cell is formed in a semiconductor body. A memory-transistor well is disposed within the semiconductor body. A switch-transistor well is disposed within the semiconductor body and is electrically isolated from the memory transistor well. A memory transistor including spaced-apart source and drain regions is formed within the memory-transistor well. A switch transistor including spaced-apart source and drain regions is formed within the switch-transistor well region. A floating gate is insulated from and self aligned with the source and drain regions of the memory transistor and switch transistor. A control gate is disposed above and aligned to the floating gate and with the source and drain regions of the memory transistor and the switch transistor.