摘要:
An electroless Ni—P plating method according to the present invention includes the steps of: providing a substrate including an insulating substrate and a copper alloy layer that has a predetermined pattern including a plurality of island portions that are isolated from each other; providing a plating solution to carry out electroless Ni—P plating; providing a solid piece including Ni, Ni—P, Co or Co—Ni on at least the surface thereof; and bringing the solid piece into contact with the surface of at least two of the island portions that are both in contact with the plating solution, thereby selectively forming an electroless Ni—P plated coating on the surface of the island portions. Thus, the present invention provides a Ni—P plating method that can subject the copper pattern on the insulating substrate to high-precision selective Ni—P plating on an industrial basis.
摘要:
There is provided a separator for a fuel cell having a very good anticorrosiveness and electrical conductivity.A separator for a fuel cell according to the present invention includes: a base 1 formed of a steel which contains 10.5 mass % or more of Cr; a metal film 3 formed on the surface of the base 1; and an intermediate layer 2 formed between the base 1 and the metal film 3, the intermediate layer 2 containing oxygen. The metal film 3 is composed of at least one metallic element selected from the group consisting of Ta, Nb, and Ti, and the intermediate layer 2 contains Fe and Cr which are contained in the steel and at least one metallic element selected from the group consisting of Ta, Nb, and Ti composing the metal film 3.
摘要:
A substrate according to the present invention includes a metal plate, and an insulating film, which is provided on the surface of the metal plate and which includes needle alumina particles and granular particles. The substrate of the present invention has excellent insulating property and can be manufactured on an industrial basis with acceptable efficiency.
摘要:
A solder ball 50 according to the present invention includes a spherical core 2 and a solder layer 4, which includes Sn and Ag and which is provided so as to wrap the core 2 up. The amount of water contained in the solder layer 4 is 100 μl/g or less when represented by the amount of water vapor in standard conditions.
摘要:
An R—Fe—B permanent magnet body is cleaned by ion sputtering, after which a Ti coating film is formed on the surface of the magnet body by a thin film forming method such as ion plating, after which an Al coating film is formed as an intermediate layer, after which an AlN coating film, TiN coating film, or Ti1−xAlxN coating film is formed by a thin film forming method such as ion reactive plating in N2 gas. By having the Al coating film layer present as an intermediate layer, it acts as a sacrificial coating film for the permanent magnet body and the foundation layer Ti coating film, whereupon adhesion with the Ti coating film is sharply improved, and the time until corrosion develops is lengthened, even in such severe corrosion resistance tests as salt water spray tests. Thus R—Fe—B permanent magnets are obtained which exhibit outstanding salt water spray resistance and wear resistance and which have stable magnetic characteristics.
摘要:
A permanent magnet useful in an ultra-high vacuum atmosphere, such as an undulator requiring the ultra-high vacuum atmosphere of less than 1.times.10.sup.-9 Pa and which, has excellent magnetic characteristics, includes an R-Fe-B system permanent magnet having a Ti undercoat layer on a surface thereof, an external layer selected from TiN, AlN and Ti.sub.1-x Al.sub.x N (x is 0.03 to 0.70), and an Al intermediate layer therebetween.