摘要:
A method of manufacturing microalloyed structural steels by rolling in a CSP plant or compact strip production plant, wherein the cast slab strand is supplied divided into rolling lengths through an equalizing furnace to a multiple-stand CSP rolling train and is continuously rolled in the rolling train into hot-rolled wide strip, wherein the strip is cooled in a cooling section and is reeled into coils, and wherein, for achieving optimum mechanical properties, a controlled structure development by thermomechanical rolling is carried out as the thin slab travels through the CSP plant. For manufacturing high-strength microalloyed structural steels with a yield point of ≧480 MPa, the available strengthening mechanisms are utilized in a complex manner in order to achieve an optimum property complex with respect to strength and toughness of the structural steels, by carrying out, in addition to the thermomechanical rolling with the method steps according to U.S. patent application Ser. No. 09/095,338 filed Jun. 10, 1998, now U.S. Pat. No. 6,030,470, a further influence on the structure of the thin slabs by changing the material composition in order to achieve a specific mixed crystal strengthening by an increased silicon content and/or a complex mixed crystal strengthening by an increased content of copper, chromium, nickel.
摘要:
High surface area Mo.sub.2 N or MoN electrodes for use in high energy density energy storage devices, and processes for fabricating the electrodes, are described wherein a precursor molybdenum solution is applied to a metallic foil substrate which is heated to produce a MoO.sub.3 coating on the substrate, which coating is converted to Mo.sub.2 N and MoN by reaction with ammonia. Mo.sub.2 N and MoN electrodes are also produced in a chemical vapor deposition process in which molybdenum pentachloride carried by an inert gas and ammonia are the reaction gases for producing Mo.sub.2 N and MoN films.
摘要:
The invention is a method of ion implantation of dopant ions into a substrate of silicon carbide. In the method, the implantation takes place at elevated temperatures, following which the substrate may be oxidized or annealed.
摘要:
The invention comprises a method of forming a diode which is operable at high temperature, at high power levels, and under conditions of high radiation density. The method comprises bombarding a region of a substrate of doped silicon carbide having a first conductivity type with high temperature ion implantation of doping ions into the substrate to give the bombarded region an opposite conductivity type. Regions of opposite conductivity type adjacent one another and a respective p-n junction are thereby formed. Ohmic contacts are added to the substrate and to the bombarded region to complete the diode.
摘要:
Sensors for sensing/measuring one or more analytes in a chemical environment. Each sensor is based on a semiconductor structure having an interfacial region containing a two-dimensional electron gas (2DEG). A catalyst reactive to the analyte(s) is in contact with the semiconductor structure. Particles stripped from the analyte(s) by the catalyst passivate the surface of the semiconductor structure at the interface between the catalyst and the structure, thereby causing the charge density in the 2DEG proximate the catalyst to change. When this basic structure is incorporated into an electronic device, such as a high-electron-mobility transistor (HEMT) or a Schottky diode, the change in charge density manifests into a change in an electrical response of the device. For example, in an HEMT, the change in charge density manifests as a change in current through the transistor, and, in a Schottky diode, the change in charge density manifests as a change in capacitance.
摘要:
An improved backsheet used in the construction of solar panels is disclosed. A method of manufacturing the backsheet and solar panel comprising the backsheet, including coextrusion processes are also disclosed. Additionally, a photovoltaic solar panel module comprising the backsheet of the invention is disclosed. The backsheet of the instant invention may comprise an exterior layer having inner and outer surfaces, a middle layer, having inner and outer surfaces, and an interior layer having inner and outer surfaces. In one embodiment of the invention, the outer surface of the middle layer may be adjoined to the inner surface of the exterior layer, and the inner surface of the middle layer may be adjoined to the outer surface of the interior layer. The exterior layer, middle layer, and interior layer may be adjoined via a co-extrusion process, thereby eliminating the need for the use of adhesives for bonding the layers of the backsheet together. The backsheet of the invention improves upon the efficiency, strength, weather resistance, cost, and useful life of the solar panels in which the backsheet is incorporated.
摘要:
Solar panels of ethylene-vinyl acetate copolymer resin having at least one layer of substantially clear encapsulant and a second layer of laminar encapsulant having a substantially clear layer and a pigmented layer provide excellent long term performance.
摘要:
A method of preparing an n-type epitaxial layer of aluminum nitride conductively doped with germanium comprises directing a molecular beam of aluminum atoms onto the growth surface of a substrate that provides an acceptable lattice match for aluminum nitride; directing a molecular beam of activated nitrogen to the growth surface of the substrate; and directing a molecular beam of germanium to the growth surface of the substrate; while maintaining the growth surface of the substrate at a temperature high enough to provide the surface mobility and sticking coefficient required for epitaxial growth, but lower than the temperature at which the surface would decompose or the epitaxial layer disassociate back into atomic or molecular species.
摘要:
A substrate includes non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non-gallium nitride sidewalls and non-gallium nitride tops and the trenches include non-gallium floors. Gallium nitride is grown on the non-gallium nitride posts, including on the non-gallium nitride tops. Preferably, gallium nitride pyramids are grown on the non-gallium nitride tops and gallium nitride then is grown on the gallium nitride pyramids. The gallium nitride pyramids preferably are grown at a first temperature and the gallium nitride preferably is grown on the pyramids at a second temperature that is higher than the first temperature. The first temperature preferably is about 1000° C. or less and the second temperature preferably is about 1100° C. or more. However, other than temperature, the same processing conditions preferably are used for both growth steps. The grown gallium nitride on the pyramids preferably coalesces to form a continuous gallium nitride layer. Accordingly, gallium nitride may be grown without the need to form masks during the gallium nitride growth process. Moreover, the gallium nitride growth may be performed using the same processing conditions other than temperatures changes. Accordingly, uninterrupted gallium nitride growth may be performed.
摘要:
A substrate includes non-gallium nitride posts that define trenches therebetween, wherein the non-gallium nitride posts include non-gallium nitride sidewalls and non-gallium nitride tops and the trenches include non-gallium floors. Gallium nitride is grown on the non-gallium nitride posts, including on the non-gallium nitride tops. Preferably, gallium nitride pyramids are grown on the non-gallium nitride tops and gallium nitride then is grown on the gallium nitride pyramids. The gallium nitride pyramids preferably are grown at a first temperature and the gallium nitride preferably is grown on the pyramids at a second temperature that is higher than the first temperature. The first temperature preferably is about 1000° C. or less and the second temperature preferably is about 1100° C. or more. However, other than temperature, the same processing conditions preferably are used for both growth steps. The grown gallium nitride on the pyramids preferably coalesces to form a continuous gallium nitride layer. Accordingly, gallium nitride may be grown without the need to form masks during the gallium nitride growth process. Moreover, the gallium nitride growth may be performed using the same processing conditions other than temperatures changes. Accordingly, uninterrupted gallium nitride growth may be performed.