Abstract:
A system including a programmable implantable monitoring device and a programmer for programming the device and a method of use thereof. The programmer may be configured to transmit programming commands responsive to entry of a reason for monitoring to the implantable device including a prioritization of an arrhythmia storage criterion. The implantable may be configured to thereafter store and/or transmit records of the arrhythmia according to the prioritization. The programmer may be configured to transmit the patient's age to the implantable device and the implantable may be configured to thereafter apply arrhythmia detection criteria based upon the patient's age.
Abstract:
A system and method is provided to measure intrathoracic complex impedance and to identify and indicate disease conditions based on the impedance measurements. Multiple impedance vectors may be taken into account, and an optimal vector may be selected to provide the most useful impedance measurement for the identification and indication of disease conditions.
Abstract:
This disclosure is directed to techniques for detecting and mitigating inaccurate sensing in a medical system. In some examples, one or more sensors of the medical system may include at least one electrode configured to sense an impedance of a portion of a patient's body proximate to the electrode and processing circuitry of the medical system may detect an inaccuracy in the data corresponding to the one or more patient physiological parameters based upon data including at least the sensed impedance of the portion of the patient body; correct at least a portion of the inaccuracy in the data corresponding to the one or more patient physiological parameters; and generate, for display on a display device, output data indicating the inaccuracy in the data corresponding to the one or more patient physiological parameters.
Abstract:
Methods and systems for seamless adjustment of treatment are disclosed. A determination is made as to whether to intervene with a patient's treatment. Implanted device memory data is acquired over a pre-specified time period. Risk status is determined from the device memory data. Another external device memory data is acquired over a pre-specified time period. A determination is made as to whether to adjust treatment of the patient in response to the risk status, the data acquired from the implanted device memory and the external device memory data.
Abstract:
Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
Abstract:
Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
Abstract:
An implantable medical device is configured to determine a first atrial arrhythmia score from ventricular events sensed by a sensing circuit of an implantable medical device and determine a second atrial arrhythmia score from an intraventricular signal comprising atrial mechanical event signals attendant to atrial systole and produced by a sensor of the implantable medical device. An atrial arrhythmia is detected based on the first atrial arrhythmia score and the second atrial arrhythmia score.
Abstract:
Devices, systems, and techniques are disclosed for verifying the occurrence of an acute health event. An example device includes communication circuitry configured to receive a communication indicative of an acute health event of a patient and memory communicatively coupled to the communication circuitry and being configured to store the indication of the acute health event. The device includes processing circuitry communicatively coupled to the communication circuitry and the memory. The processing circuitry is configured to, in response to the communication, verify the acute health event and based on the verification of the acute health event, send an alert regarding the acute health event.
Abstract:
A system comprising processing circuitry configured to receive a wirelessly-transmitted message from a medical device, the message indicating that the medical device detected an acute health event of the patient. In response to the message, the processing circuitry is configured to determine a location of the patient, determine an alert area based on the location of the patient, and control transmission of an alert of the acute heath event of the patient to any one or more computing devices of one or more potential responders within the alert area.
Abstract:
An example device of a patient includes an antenna configured to wirelessly receive communication from a medical device; and processing circuitry coupled to the antenna and configured to: determine that the received communication indicates that a patient is experiencing an acute health event; in response to the determination, determine one or more physical states of the patient based on sensed data from one or more sensors; confirm that the patient is not experiencing the acute health event based on the determined one or more physical states; and output information based on the confirmation that the patient is not experiencing the acute health event.