摘要:
In this invention, a cutting tool comprises two layers of hard sintered compact of cBN. The first sintered compact layer comprises about 75-98% by volume of cBN and a first binder material. The first binder material comprises from about 1 to out 40% by weight of Al. The second sintered compact layer comprises from about 40 to about 65% by volume of cBN and a second binder material. The second binder material comprises about 2 to about 30% by weight of Al. The first sintered compact layer is bonded to the second sintered compact layer. This composite material is bonded directly or indirectly to a tool holder to form a cutting tool. The first sintered compact layer constitutes a rake face of the cutting tool.
摘要:
A polycrystalline diamond is prepared by chemical vapor deposition (step 101). A surface of the polycrystalline diamond is metallized (step 102). The metallized surface of the polycrystalline diamond is grooved with a YAG laser (step 103). A wedge or the like is driven into the grooves of the polycrystalline diamond to pressurize the same, whereby the polycrystalline diamond is divided along the grooves (step 104). Alternatively, a surface of a polycrystalline diamond prepared by chemical vapor deposition is grooved with a YAG laser (step 112), so that the surface of the polycrystalline diamond is metallized (step 113) after the grooving.
摘要:
A polycrystalline diamond cutting tool is prepared by employing polycrystalline diamond which is synthesized on a mirror-finished surface of a base material by a low-pressure vapor phase method, as a tool material. A surface, which has been in contact with the base material, of the polycrystalline diamond layer is utilized as a tool rake face. A flank of the tool is formed by laser processing. The flank is covered with a graphite coating layer in one embodiment, while such a graphite coating layer is removed by acid treatment or the like in another embodiment. In still another embodiment, a flank is formed by grinding, and a cutting edge portion is honed by laser processing.
摘要:
A sintered diamond compact or high pressure form boron nitride compact with an improved brazability, suitable for use for wear resisting tools, cutting tools, drill bits, dressers and wire-drawing dies is provided. This compact comprises a compact part containing at least 20% by volume of diamond and/or high pressure form boron nitride and a cemented carbide substrate bonded directly or through an interlayer to the compact part, characterized in that the surface of the compact is coated, at least partly, with a thin film consisting essentially of at least one member selected from the group consisting of carbides, carbonitrides and nitrides and mixtures or solid solutions thereof of at least one element selected from the group consisting of silicon and Group IVa, Va and VIa of Periodic Table, and having a thickness of 1 to 20 .mu.m.
摘要:
A composite tool with a higher bonding strength and higher heat resistance is provided comprising an insert of a hard material such as composite diamond or BN compacts and a support of a hard metal or alloy such as steel and cemented carbides, having a larger volume than the insert, the insert and support being bonded by friction welding through an interlayer of a high strength metal or alloy such as Co and Ni with a thickness of at most 1 mm.
摘要:
A sintered compact is obtained by sintering a mixture containing about 50 to 75 percent by volume of cubic boron nitride and about 25 to 50 percent of a binder under cBN-stable superhigh pressure conditions. The binder contains about 20 to 50 percent by weight of Al and one or more Ti compounds selected from the group consisting of TiN.sub.z, Ti(C,N).sub.z, TiC.sub.2, (Ti,M)C.sub.z, (Ti,M) (C,N).sub.z and (Ti,M)N.sub.z, wherein M indicates a transition metal of the group IVa, Va or VIa of the periodic table excepting Ti, and wherein z is within a range of 0.5.ltoreq.z.ltoreq.0.85. The atomic ratio of the content of Ti to that of the transition metal M in the binder is within the range of about2/1.ltoreq.Ti/M.ltoreq.97/3.The binder further contains tungsten or one or more tungsten compounds, whereby the total tungsten concentration in the binder is about 4 to 40 percent by weight.
摘要翻译:通过在cBN稳定的超高压条件下烧结含有约50至75体积%的立方氮化硼和约25至50%的粘合剂的混合物来获得烧结体。 所述粘合剂含有约20〜50重量%的Al和选自TiNz,Ti(C,N)z,TiC 2,(Ti,M)Cz,(Ti,M)(C ,N)z和(Ti,M)Nz,其中M表示除了Ti之外的元素周期表的基团IVa,Va或VIa的过渡金属,并且其中z在0.5≤z≤0.85的范围内 。 粘合剂中Ti与过渡金属M含量的原子比在约2/1 Ti / M = 97/3的范围内。 粘合剂还含有钨或一种或多种钨化合物,由此粘合剂中的总钨浓度为约4-40重量%。
摘要:
Herein is disclosed a high hardness sintered diamond compact and a process for the production of the same.The high hardness sintered diamond compact comprises 80 to 95% by volume of diamond particles, 0.5 to 5% by volume of a carbide particles selected from a group consisting of WC and (Mo,W)C and having a diameter not larger than 1 micron, and 4.5 to 15% by volume of an iron group metal, at least 95% by volume of said diamond particles having a diameter from 0.1 to 2 micron and the remainder of the diamond particles being particles having a diameter smaller than 0.1 micron.The ratio by volume of the amount of the diamond particles having a diameter from 1 to 2 micron to that of the diamond particles having a diameter from 0.1 to 1 micron ranges from 4 to 1.The high hardness sintered diamond compact according to the present invention is preferably usable as a drawing die for drawing a high hardness plated-steel wire and as a tool bit.The process according to the invention, comprises the steps of:preparing a diamond powder having a particle diameter distribution from 0.2 to 2 micron;mixing the diamond powder with an iron group metal and one member selected from the group consisting of WC and (Mo,W)C powders each having a particle diameter not larger than 1 micron;hot-pressing the thus obtained mixture of powders at an ultra-high pressure and a high temperature where diamond may be stable.
摘要:
A diamond sintered body for tools contains a diamond content in excess of 93 percent and not more than 99 percent by volume and a residue including at least one of a metal or a carbide selected from groups IVa, Va and VIa of the periodic table and an iron group metal of 0.1 to 3 percent by volume in total and pores at least 0.5 percent and not more than 7 percent by volume.