摘要:
Example embodiments of the invention may provide systems and methods for a power amplifier. The systems and methods may include a first common-source device having a first source, a first gate, a first drain, and a first body, where the first source is connected to the first body, and wherein the first gate is connected to an input port. The systems and methods may further include a second common-gate device having a second source, a second gate, a second drain, and a second body, where the second source is connected to the first drain, where the second source is further connected to the second body, and where the second drain is connected to an output port.
摘要:
Embodiments of the invention may provide for a long delay generator for the spectrum sensing of cognitive radio systems. The long delay generator may include an Analog-to-Digital Converter (ADC), memory element, and Digital-to-Analog Converter (DAC). The memory element may utilize shift register bank or Random-Access Memory (RAM) cells. The long delay generator may provide for a selectable delay by digitizing the received signal, delaying the received signal in the digital domain, and reconstructing the delayed signal as an analog. The analog delayed signal may then be compared or otherwise correlated with the original input signal using an analog auto-correlation technique to determine whether a meaningful signal type has been identified or otherwise detected.
摘要:
Embodiments of the invention may provide for a digital LINC (linear amplification with nonlinear components) transmitter. The digital LINC transmitter may include a signal component separator, at least one digital delay modulator, a frequency synthesizer, at least one power amplifier, a power combiner, an antenna, and a mismatch compensator. Additionally, systems and methods may be provided for compensating for phase and amplitude mismatches between two signal paths.
摘要:
Systems and methods may be provided for threshold determinations for spectrum sensing. The systems and methods may include receiving a false alarm rate, where the false alarm rate is associated with false occupancy identifications of a spectrum segment, determining a noise floor as a function of a noise figure and characteristics of a multi-resolution spectrum sensing (MRSS) window, and calculating a sensing threshold based at least in part upon the false alarm rate and the noise floor. The systems and methods may also include determining whether a portion of an RF spectrum is occupied based at least in part on the calculated sensing threshold.
摘要:
Systems, methods, and apparatuses are provided for coarse-sensing modules that are operative for providing initial determinations of spectrum occupancy. The coarse-sensing modules may include a wavelet waveform generator providing a plurality of wavelet pulses, and a multiplier that combines the wavelet pulses with an input signal to form a correlation signal. The coarse sensing modules may further include an integrator that receives the generated correlation signal from the multiplier, where the integrator determines correlation values from integrating the correlation signal, and a spectrum recognition module in communication with the integrator that determines an available spectrum segment based at least in part on the correlation values. In addition, the spectrum recognition module may determine an available spectrum segment by utilizing information from a spectrum usage database, where the spectrum usage database includes information associated with one or more known signal types.
摘要:
Systems, methods, and apparatuses are provided for coarse-sensing modules that are operative for providing initial determinations of spectrum occupancy. The coarse-sensing modules may include a wavelet waveform generator providing a plurality of wavelet pulses, and a multiplier that combines the wavelet pulses with an input signal to form a correlation signal. The coarse sensing modules may further include an integrator that receives the generated correlation signal from the multiplier, where the integrator determines correlation values from integrating the correlation signal, and a spectrum recognition module in communication with the integrator that determines an available spectrum segment based at least in part on the correlation values. In addition, the spectrum recognition module may determine an available spectrum segment by utilizing information from a spectrum usage database, where the spectrum usage database includes information associated with one or more known signal types.
摘要:
Embodiments of the invention may provide for systems and methods for providing a power amplifier with integrated passive device, thereby improving the performance of the power amplifier. The power amplifier may include a signal amplification section, a power combining section, and a coupling device section that interconnects the signal amplification section and the power combining section. The signal amplification section may be implemented on a first substrate, and the power combining section may be implemented on a second substrate, where the first substrate and the second substrate may be different. The power combining section may be implemented by the integrated passive device (IPD) that may have characteristics of high performance passive device with flexibility of implementing diverse functions, including a notch filter, a low pass filter, and/or bypass capacitance for bias network. The power combining section implemented by the integrated passive device may have an improved power combining efficiency.
摘要:
Embodiments of the invention may provide for enhancement systems and methods for a power amplifier output control system. In an example embodiment, driver amplifier control may be provided in conjunction with power amplifier control to improve the power efficiency and/or dynamic range of the transmitter system. Furthermore, control over the driver amplifier may allow for relaxed power control slope, which may lessens the burden of digital to analog converters (DACs) in transmitter systems such as cellular transmitter systems. Also, systems and methods in accordance with example embodiments of the invention may provide a less sensitive solution to operational environment variations such as temperature, battery power voltage and implementation IC process.
摘要:
Systems and methods may include a signal component separator that receives a non-constant envelope input signal and at least one phase offset value, and generates first digital phase data and second digital phase data; at least one digital phase modulator that receives the first phase data and the second phase data and operates with a frequency synthesizer to generate a first component signal having a first constant envelope and a second component signal having a second constant envelope; at least one power amplifier that amplifies the first component signal and the second component signal; a non-isolated power combiner that combines the first amplified component signal and the second amplified component signal to generate an output signal having a non-constant envelope; and a mismatch compensator that monitors the output signal to determine the at least one phase offset value, where the at least one phase offset value is utilized by the signal component separator for phase adjustment.
摘要:
Systems and methods may be provided for a LINC system having a level-shifting LINC amplifier. The systems and methods may include a dynamic power supply that is adjustable to provide at least a first voltage supply level and a second voltage supply level higher than the first voltage supply level; a first power amplifier that amplifies a first component signal to generate a first amplified signal; a second power amplifier that amplifiers a second component signal to generate a second amplified signal, where the first component signal and the second component signal are components of an original signal, where the first component signal and the second component signal each have a constant envelope, and where the original signal has a non-constant envelope, and where the first and second power amplifiers are biased at the first voltage supply level or the second voltage supply level based upon an analysis of an amplitude of the original signal.