Abstract:
A method is described that includes detecting that a memory access of system management mode program code is attempting to reach program code outside of a protected region of memory by comparing a target memory address of a memory access instruction of the system management program code again information that defines confines of the protection region. The method also includes raising an error signal in response to the detecting.
Abstract:
Disclosed is an apparatus and a method to inject errors to a memory. In one embodiment, a dedicated interface includes an error injection system address register and an error injection mask register coupled to the error injection system address register. If the error injection system address register includes a system address that matches an incoming write address, the error injection mask register outputs an error to the memory.
Abstract:
Examples may include a basic input/output system (BIOS) for a computing platform communicating with a controller for a non-volatile dual in-line memory module (NVDIMM). Communication between the BIOS and the controller may include a request for the controller to scan and identify error locations in non-volatile memory at the NVDIMM. The non-volatile memory may be capable of providing persistent memory for the NVDIMM.
Abstract:
Apparatus, systems, and methods to manage memory operations are described. In one example, a controller comprises logic to receive a first transaction to operate on a first data element in a volatile memory, determine whether the first data element is to be stored in a nonvolatile memory, and in response to a determination that the first data element is to be stored in a nonvolatile memory, to forward the first transaction to the memory controller coupled to the nonvolatile memory. Other examples are also disclosed and claimed.
Abstract:
Technologies for system management interrupt (“SMI”) handling include a number of processor cores configured to enter a system management mode (“SMM”) in response to detecting an SMI. The first processor core to enter SMM and acquire a master thread lock sets an in-progress flag and executes a master SMI handler without waiting for other processor cores to enter SMM. Other processor cores execute a subordinate SMI handler. The master SMI handler may direct the subordinate SMI handlers to handle core-specific SMIs. The multi-core processor may set an SMI service pending flag in response to detecting the SMI, which is cleared by the processor core that acquires the master thread lock. A processor core entering SMM may immediately resume normal execution upon determining the in-progress flag is not set and the service pending flag is not set, to detect and mitigate spurious SMIs. Other embodiments are described and claimed.
Abstract:
Embodiments of apparatus, computer-implemented methods, systems, devices, and computer-readable media are described herein for a computing device with a platform entity such as an interrupt handier configured to notify an operating system or virtual machine monitor executing on the computing device of an input/output error-containment event. In various embodiments, the interrupt handler may be configured to facilitate recovery of a link to an input/output device that caused the input/output error-containment event, responsive to a directive from the operating system or virtual machine monitor.
Abstract:
In one embodiment, the present invention includes a processor that has an on-die storage such as a static random access memory to store an architectural state of one or more threads that are swapped out of architectural state storage of the processor on entry to a system management mode (SMM). In this way communication of this state information to a system management memory can be avoided, reducing latency associated with entry into SMM. Embodiments may also enable the processor to update a status of executing agents that are either in a long instruction flow or in a system management interrupt (SMI) blocked state, in order to provide an indication to agents inside the SMM. Other embodiments are described and claimed.
Abstract:
A non-volatile random access memory (NVRAM) is used in a computer system to enhance support to sleep states. The computer system includes a processor, a non-volatile random access memory (NVRAM) that is byte-rewritable and byte-erasable, and power management (PM) module. A dynamic random access memory (DRAM) provides a portion of system address space. The PM module intercepts a request initiated by an operating system for entry into a sleep state, copies data from the DRAM to the NVRAM, maps the portion of the system address space from the DRAM to the NVRAM, and turns off the DRAM when transitioning into the sleep state. Upon occurrence of a wake event, the PM module returns control to the operating system such that the computer system resumes working state operations without the operating system knowing that the portion of the system address space has been mapped to the NVRAM.
Abstract:
A system and method are described for integrating a memory and storage hierarchy including a non-volatile memory tier within a computer system. In one embodiment, PCMS memory devices are used as one tier in the hierarchy, sometimes referred to as “far memory.” Higher performance memory devices such as DRAM placed in front of the far memory and are used to mask some of the performance limitations of the far memory. These higher performance memory devices are referred to as “near memory.”
Abstract:
When a processing system boots, it may retrieve an encrypted version of a cryptographic key from nonvolatile memory to a processing unit, which may decrypt the cryptographic key. The processing system may also retrieve a predetermined authentication code for software of the processing system, and the processing system may use the cryptographic key to compute a current authentication code for the software. The processing system may then determine whether the software should be trusted, by comparing the predetermined authentication code with the current authentication code. In various embodiments, the processing unit may use a key stored in nonvolatile storage of the processing unit to decrypt the encrypted version of the cryptographic key, a hashed message authentication code (HMAC) may be used as the authentication code, and/or the software to be authenticated may be boot firmware, a virtual machine monitor (VMM), or other software. Other embodiments are described and claimed.