摘要:
A semiconductor device includes a first field effect transistor (FET) and a second FET located on a substrate, the first FET comprising a first interfacial oxide layer, and the second FET comprising a second interfacial oxide layer, wherein the second interfacial oxide layer of the second FET is thicker than the first interfacial oxide layer of the first FET; and a recess located in the substrate adjacent to the second FET.
摘要:
A method for forming a semiconductor device includes forming a first field effect transistor (FET) and a second FET on a substrate, the first FET comprising a first interfacial oxide layer, and the second FET comprising a second interfacial oxide layer; encapsulating the first interfacial oxide layer of the first FET; and performing lateral oxidation of the second interfacial oxide layer of the second FET, wherein the lateral oxidation of the second interfacial oxide layer of the second FET converts a portion of the substrate located underneath the second FET into additional interfacial oxide.
摘要:
A semiconductor device includes a first field effect transistor (FET) and a second FET located on a substrate, the first FET comprising a first interfacial oxide layer, and the second FET comprising a second interfacial oxide layer, wherein the second interfacial oxide layer of the second FET is thicker than the first interfacial oxide layer of the first FET; and a recess located in the substrate adjacent to the second FET.
摘要:
A semiconductor device is provided that in one embodiment includes at least one semiconductor fin structure atop a dielectric surface, the semiconductor fin structure including a channel region of a first conductivity type and source and drain regions of a second conductivity type, in which the source and drain regions are present at opposing ends of the semiconductor fin structure. A high-k gate dielectric layer having a thickness ranging from 1.0 nm to 5.0 nm is in direct contact with the channel of the semiconductor fin structure. At least one gate conductor layer is in direct contact with the high-k gate dielectric layer. A method of forming the aforementioned device is also provided.
摘要:
Semiconductor structures are provided with on-board deuterium reservoirs or with deuterium ingress paths which allow for diffusion of deuterium to semiconductor device regions for passivation purposes. The on-board deuterium reservoirs are in the form of plugs which extend through an insulating layer and a deuterium barrier layer to the semiconductor substrate, and are preferably positioned in contact with a shallow trench oxide which will allow diffusion of deuterium to the semiconductor devices. The deuterium ingress paths extend through thin film layers from the top or through the silicon substrate. The latter include shallow trench isolations formed in a semiconductor substrate which are adjacent and connected to semiconductor devices formed in the semiconductor substrate, and where the back portion of the semiconductor substrate has been polished or ground down to the bottom of the shallow trench isolation, thereby allowing deuterium, during an anneal, to diffuse from the back through the shallow trench isolation to the semiconductor devices in the semiconductor substrate.
摘要:
Semiconductor structures are provided with on-board deuterium reservoirs or with deuterium ingress paths which allow for diffusion of deuterium to semiconductor device regions for passivation purposes. The on-board deuterium reservoirs are in the form of plugs which extend through an insulating layer and a deuterium barrier layer to the semiconductor substrate, and are preferably positioned in contact with a shallow trench oxide which will allow diffusion of deuterium to the semiconductor devices. The deuterium ingress paths extend through thin film layers from the top or through the silicon substrate. The latter include shallow trench isolations formed in a semiconductor substrate which are adjacent and connected to semiconductor devices formed in the semiconductor substrate, and where the back portion of the semiconductor substrate has been polished or ground down to the bottom of the shallow trench isolation, thereby allowing deuterium, during an anneal, to diffuse from the back through the shallow trench isolation to the semiconductor devices in the semiconductor substrate.
摘要:
A semiconductor device is provided that in one embodiment includes at least one semiconductor fin structure atop a dielectric surface, the semiconductor fin structure including a channel region of a first conductivity type and source and drain regions of a second conductivity type, in which the source and drain regions are present at opposing ends of the semiconductor fin structure. A high-k gate dielectric layer having a thickness ranging from 1.0 nm to 5.0 nm is in direct contact with the channel of the semiconductor fin structure. At least one gate conductor layer is in direct contact with the high-k gate dielectric layer. A method of forming the aforementioned device is also provided.
摘要:
A MOS structure processed to have a semiconductor-dielectric interface that is passivated to reduce the interface state density. An example is a MOSFET having a gate dielectric on which an electrode is present that is substantially impervious to molecular hydrogen, but sufficiently thin to be pervious to atomic hydrogen, enabling atomic hydrogen to be diffused therethrough into an underlying semiconductor-dielectric interface. Atomic hydrogen diffusion can be achieved by subjecting such an electrode to hydrogen plasma, forming the electrode of an aluminum-tungsten alloy in the presence of hydrogen, and implanting atomic hydrogen into the electrode. The latter two techniques are each followed by an anneal to cause the atomic hydrogen to diffuse through the electrode and into the semiconductor-dielectric interface.
摘要:
An extremely-thin silicon-on-insulator transistor is provided that includes a buried oxide layer above a substrate, a silicon layer above the buried oxide layer, a gate stack on the silicon layer, a nitride liner on the silicon layer and adjacent to the gate stack, an oxide liner on and adjacent to the nitride liner, and raised source/drain regions. The gate stack includes a high-k oxide layer on the silicon layer and a metal gate on the high-k oxide layer. Each of the raised source/drain regions has a first part comprising a portion of the silicon layer, a second part adjacent to parts of the oxide liner and the nitride liner, and a third part above the second part. Also provided is a method for fabricating an extremely-thin silicon-on-insulator transistor.
摘要:
A process for passivating the semiconductor-dielectric interface of a MOS structure to reduce the interface state density to a very low level. A particular example is a MOSFET having a tungsten electrode that in the past has prevented passivation of the underlying semiconductor-dielectric interface to an extent sufficient to reduce the interface state density to less than 5×1010/cm2−eV. Though substantially impervious to molecular hydrogen, thin tungsten layers are shown to be pervious to atomic hydrogen, enabling atomic hydrogen to be diffused through a tungsten electrode into an underlying semiconductor-dielectric interface. Three general approaches are encompassed: forming an aluminum-tungsten electrode stack in the presence of hydrogen so as to store atomic hydrogen between the tungsten and aluminum layers, followed by an anneal to cause the atomic hydrogen to diffuse through the tungsten layer and into the interface; subjecting a tungsten electrode to hydrogen plasma, during which atomic hydrogen diffuses through the electrode and into the semiconductor-dielectric interface; and implanting atomic hydrogen into tungsten electrode, followed by an anneal to cause the atomic hydrogen to diffuse through the electrode and into the semiconductor-dielectric interface.