摘要:
A method and a system for controlling a driving function of a vehicle, whereby in a first operating state, the driving function is controlled by a vehicle guidance system, and in a second operating state, the driving function is controlled by a command of a driver, a transition from the first operating state to the second operating state being accomplished with the aid of an orderly handover through a preset handover procedure when it is recognized that a predetermined first condition is fulfilled, or with the aid of a handover in a fallback solution when it is recognized that a predetermined second condition is fulfilled.
摘要:
A method for creating an obstacle map of an area surrounding a motor vehicle on a road includes preparing a rasterized obstacle map, scanning an area surrounding the motor vehicle, dividing the surrounding into cells, recording those of the cells that are occupied by an obstacle, and identifying grid points of the obstacle map that correspond to occupied cells in the surrounding area. The dimensions of the cells are determined as a function of the position thereof relative to the course of the road.
摘要:
A method for a vehicle equipped with a surroundings sensor system for generating an evaluation signal representing the trafficability of at least one route section to be traveled by the vehicle, the evaluation signal being ascertained as a function of surroundings data which are gathered with the aid of the surroundings sensor system, the evaluation signal being further ascertained as a function of at least one piece of surroundings information from an elevation map representing the topology of the at least one route section and/or at least one movement value of the vehicle representing a pitch and/or roll angle.
摘要:
A method for operating a vehicle including at least one assistance function or at least a partially automated driving function, including: ascertaining at least one safe driving state; capturing the current driving state; determining a permissible range for the current driving state of the vehicle from which at least one of the at least one safe driving state is attainable; operating the vehicle using an activable or active assistance function or an at least partially automated driving function within the specified permissible range.
摘要:
A sensor system for a vehicle for detecting bridges and tunnels is described, which includes a lateral LIDAR sensor, which is located on a first side of the vehicle and has a detection area covering a lateral surrounding area of the vehicle, and a control unit for evaluating the measuring data from the lateral LIDAR sensor. The lateral LIDAR sensor is positioned rotated about a vertical axis so that part of the detection area of the lateral LIDAR sensor at the front in the travel direction detects an upper spatial area located at a predefined distance ahead of the vehicle. The lateral LIDAR sensor is tilted about its transverse axis with respect to the horizontal, so the detection area of the lateral LIDAR sensor detects the remote upper spatial area at a predefined height above the vehicle using its part which is at the front in the direction of travel.
摘要:
A method for operating a vehicle includes: ascertaining a danger measure of a possible stop position for a safe parking of the vehicle; comparing the ascertained danger measure to a predetermined danger measure threshold value; and guiding the vehicle to the possible stop position in order to safely park the vehicle in the possible stop position only if the ascertained danger measure is less than or equal to the predetermined danger measure threshold value.
摘要:
A method for determining the position of a vehicle, including: determination of a GNS vehicle position by a GNS unit, sensor acquisition of a surrounding environment of the GNS vehicle position by a radar sensor unit of the vehicle in order to ascertain radar data corresponding to the acquired surrounding environment, detection of objects situated in the surrounding environment based on the radar data, ascertaining of a direction vector that points from a detected object to a reference point fixed to the vehicle, comparison of the radar data and the ascertained direction vector to a digital map that has objects and direction vectors assigned to the objects, the direction vectors assigned to the objects pointing to a position in the digital map from which the corresponding object was acquired by a radar sensor unit, and ascertaining of a corrected vehicle position based on the GNS vehicle position and the comparison.
摘要:
A method for determining the position of a vehicle, including sensing of multiple objects in a surround field of the vehicle, detecting a sequence of the multiple sensed objects in a digital map and determining a position of the vehicle in the digital map based on a position of the detected sequence in the digital map. An apparatus for determining the position of a vehicle, as well as to a computer program are also described.
摘要:
A method for ascertaining the danger potential of a lane change of an ego vehicle from the currently used traffic lane to an adjacent traffic lane, a detection range in the external space of the ego vehicle being monitored, and the effect of objects identified in the detection range on the danger potential is evaluated, and based on positions and speeds of internal other vehicles identified in the detection range, it is determined whether external other vehicles located outside the detection range are able to reach a target region in which the ego vehicle is located following the intended lane change. A method for the at least partially automated control of an ego vehicle, in which in the case of an intended lane change, the danger potential of this lane change is evaluated, and the lane change is prevented if external other vehicles are able to reach the target region.
摘要:
A method and device for determining a first highly precise position of a vehicle. The method includes acquiring surrounding-area data values using at least one radar sensor of the vehicle, the surrounding-area data values representing a surrounding area of the vehicle; and determining a rough position of the vehicle as a function of the acquired surrounding area data values. In addition, the method includes determining surrounding-area feature data values as a function of the determined rough position of the vehicle, the surrounding-area feature data values representing at least one surrounding-area feature and a second highly precise position of the at least one surrounding-area feature; and determining the first highly precise position of the vehicle as a function of the at least one surrounding-area feature, according to predefined localization criteria, the first highly precise position of the vehicle being more precise than the rough position of the vehicle.