Abstract:
A method and apparatus for object tracking are provided, where the object tracking method includes determining box information of candidate boxes in a current image frame and similarity scores of the candidate boxes based on including a search region of the current image frame with a template image corresponding to a target object, adjusting the similarity scores of the candidate boxes using a distractor map including distractor information of a previous image frame, determining a target box corresponding to the target object and a distractor box corresponding to a distractor of the target object from the candidate boxes based on the adjusted similarity scores, and updating the distractor map based on distractor information of the current image frame according to the distractor box.
Abstract:
Provided is an apparatus and method for improving the entry speed of a large-memory consuming application in an electric device which detect an execution of an application, check if the application is a large-memory consuming application which uses a large amount of memory, and if the application is the large-memory consuming application, execute pre-process thread reclaim, select a process corresponding to a reclaiming target among processes currently resident in the memory, reclaim part of the memory being used by the selected process without terminating the selected process, and thereby improve the entry speed of a large-memory consuming application.
Abstract:
A processor-implemented method with calibration includes: detecting a preset pattern comprised in a surface of a road from a driving image of a vehicle; transforming image coordinates in an image domain of the pattern into world coordinates in a world domain; determining whether to calibrate a camera capturing the driving image by comparing a size predicted based on the world coordinates of the pattern and a reference size of the pattern; in response to a determination to calibrate the camera, determining relative world coordinates of the pattern with respect to a motion of the camera, using images captured by the camera at different time points; transforming the relative world coordinates of the pattern into absolute world coordinates of the pattern; and calibrating the camera using a corresponding relationship between the absolute world coordinates of the pattern and the image coordinates of the pattern.
Abstract:
Provided are a hardmask composition, a method of forming a pattern using the hardmask composition, and a hardmask formed using the hardmask composition. The hardmask composition includes a polar nonaqueous organic solvent and one of: i) a mixture of graphene quantum dots and at least one selected from a diene and a dienophile, ii) a Diels-Alder reaction product of the graphene quantum dots and the at least one selected from a diene and a dienophile, iii) a thermal treatment product of the Diels-Alder reaction product of graphene quantum dots and the at least one selected from a diene and a dienophile, or iv) a combination thereof.
Abstract:
Provided are a hardmask composition, a method of preparing the same, and a method of forming a patterned layer using the hardmask composition. The hardmask composition may include graphene quantum dots, a metal compound, and a solvent. The metal compound may be chemically bonded (e.g., covalently bonded) to the graphene quantum dots. The metal compound may include a metal oxide. The metal oxide may include at least one of zirconium (Zr) oxide, titanium (Ti) oxide, tungsten (W) oxide, or aluminum (Al) oxide. The graphene quantum dots may be bonded to the metal compound by an M-O—C bond or an M-C bond, where M is a metal element, O is oxygen, and C is carbon.
Abstract:
Example embodiments relate to electrode materials, secondary batteries including the electrode materials, and methods of manufacturing the electrode materials and the secondary batteries. An electrode material may include a foam structure having a plurality of pores and a plurality of nanostructures disposed in the plurality of pores. The foam structure may include a graphene foam structure. The plurality of nanostructures may include at least one of a nanoparticle and a nanorod. The plurality of nanostructures may include a material capable of accommodating/discharging ions. The electrode material may be used as an anode material of a secondary battery.
Abstract:
A method of manufacturing an X-ray detector includes: applying a mask having an opening on a substrate on which a plurality of charge detection units are positioned; filling the opening with a paste including a photoelectric conversion material that absorbs X-rays to generate charges; and forming a photoconductive layer from the paste by separating the mask from the substrate. A thickness of the paste within the opening is thicker in an area adjacent to at least one edge among edges of the opening than in areas around other edges.
Abstract:
An X-ray detector may include: a thin film transistor (TFT) unit; and/or a capacitor unit. The capacitor unit may include two or more storage capacitors. The TFT unit may include: a gate electrode on one region of a substrate; a gate insulating layer on the gate electrode; an active layer on the gate insulating layer; and/or a source electrode and a drain electrode respectively on sides of the active layer.
Abstract:
A data transmission method is provided that can increase an amount of time that an electronic device has been in use and minimize the side effects. An electronic device adapted to the method is also provided. The data transmission method includes: recognizing a data transmission request of at least one first application; determining whether a first timer according to the data transmission request is within a second timer (a data detecting timer) where a data request of a second application required for network access is detected; and transmitting, when the first timer is within the second timer, request data related to the second application and user data of the first application by using at least part of the second timer and the first timer.