Abstract:
An apparatus includes a waveguide and a near-field transducer adjacent the waveguide. The near-field transducer includes an enlarged region and a peg region extending from the enlarged region towards an air bearing surface. A write pole is adjacent the near-field transducer and include a first portion having an edge extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface. A second portion of the write pole extends orthogonally to the air bearing surface and is in contact with the first portion. The apparatus includes an insulator-filled gap at the air bearing surface between the second portion of the write pole and the peg region of the near-field transducer. The gap is bounded away from the air bearing surface by the enlarged region of the near-field transducer.
Abstract:
An apparatus includes a slider with a cavity in a trailing end of the slider. A laser is positioned in the cavity and has an output facet positioned adjacent to a first wall of the cavity. A cap is connected to the trailing end of the slider and covers the laser.
Abstract:
A method fabricating a near field transducer for a heat assisted magnetic recording head including forming a peg region of a near field transducer along a first portion of a substrate of a heat assisted magnetic recording head, removing a first portion of the peg region, fabricating a barrier material along a surface of the peg region created by the removal of the first portion of the peg region; and forming an enlarged region adjacent the surface such that the barrier material is disposed at least between the surface of the peg region and the enlarged region.
Abstract:
A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.
Abstract:
A near-field transducer has an enlarged portion with a layer of soft plasmonic material. A peg formed of a thermally robust plasmonic material includes an embedded part that is partially embedded within the enlarged portion and has an exposed surface facing away from the enlarged portion. An intersection between a lower edge of the enlarged portion and the embedded part has a discontinuity.
Abstract:
A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.
Abstract:
A method involves depositing a near-field transducer on a substrate of a slider. The near-field transducer comprises a plate-like enlarged portion and a peg portion. A first hard stop extending from the near field transducer and an air bearing surface is formed. A heat sink is formed on the enlarged portion and the first hard stop. A dielectric material is deposited over the near-field transducer and the heat sink. A second hard stop is deposited on the dielectric material away from the air bearing surface. The second hard stop comprises a recess corresponding in size and location to the heat sink. The method involves milling at an oblique angle to the substrate between the first hard stop and second hard stop to cut through the heat sink at the angle. The recess of the second hard stop increases a milling rate over the heat sink compared to a second milling rate of the dielectric away from the heat sink.
Abstract:
Devices having an air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc having a front edge; a peg, the peg having a front surface at the air bearing surface of the apparatus, an opposing back surface, a top surface that extends from the front surface to the back surface, two side surfaces that expend from the front surface to the back surface and a bottom surface that extends from the front surface to the back surface; and a barrier layer, the barrier layer separating at least the back surface of the peg from the disc and the barrier layer having a thickness from 10 nm to 50 nm.
Abstract:
A polarization rotator for a recording head. The polarization rotator comprises a first waveguide coupled to an input coupler at a first end and a second waveguide. The first waveguide is offset from the second waveguide and a second end of the first waveguide is coupled to a second end of the second waveguide.