Abstract:
The disclosure relates to a countermeasure method in an electronic microcircuit, comprising successive process phases executed by a circuit of the microcircuit, and adjusting a power supply voltage between power supply and ground terminals of the circuit, as a function of a random value generated for the process phase, at each process phase executed by the circuit.
Abstract:
A method for detecting a reading error of a datum in memory. A binary word which is representative of the datum and an error correcting or detecting code is read by: reading a first part of the binary word stored at a first address in a first memory circuit; and reading a second part of the binary word stored at a second address in a second memory circuit. The first and second parts read from the first and second memory circuits, respectively, are concatenated to form a read binary word. The datum is then obtained by removing the error correcting or detecting code from the read binary word. A new error correcting or detecting code is calculated from the obtained datum and compared to the removed error correcting or detecting code to detect error in the obtained datum.
Abstract:
An embodiment integrated circuit includes a first electromagnetic pulse detection device that comprises a first loop antenna formed in an interconnection structure of the integrated circuit, a first end of the first antenna being connected to a first node of application of a power supply potential and a second end of the antenna being coupled to a second node of application of the power supply potential, and a first circuit connected to the second end of the first antenna and configured to output a first signal representative of a comparison of a first current in the first antenna with a first threshold.
Abstract:
An integrated device for physically unclonable functions is based on a set of MOS transistors exhibiting a random distribution of threshold voltages which are obtained by lateral implantations of dopants exhibiting non-predictable characteristics, resulting from implantations through a polysilicon layer. A certain number of these transistors form a group of gauge transistors which makes it possible to define a mean gate source voltage making it possible to bias the gates of certain others of these transistors (which are used to define the various bits of the unique code generated by the function). All these transistors consequently exhibit a random distribution of drain-source currents and a comparison of each drain-source current of a transistor associated with a bit of the digital code with a reference current corresponding to the average of this distribution makes it possible to define the logical value 0 or 1 of this bit.
Abstract:
A decoupling capacitor includes: two capacitor cells sharing the same well; a first trench isolation passing through the well between the two cells without reaching the bottom of the well; and a contact with the well formed in each cell.
Abstract:
An integrated circuit includes an interconnection part with a via level situated between a lower metallization level and an upper metallization level. The lower metallization level is covered by an insulating encapsulation layer and an inter-metallization level insulating layer. An electrical discontinuity is provided between a via of the via level and a metal track of the lower metallization level. The electrical discontinuity is formed by an additional insulating layer having a material composition identical to that of the inter-metallization level insulating layer. The electrical discontinuity is situated between a bottom of the via and a top of the metal track, with the discontinuity being bordered by the insulating encapsulation layer.
Abstract:
An integrated circuit including a plurality of first semiconductor strips of a first conductivity type and of second semiconductor strips of a second conductivity type arranged in alternated and contiguous fashion on a region of the second conductivity type, including for each of the first strips: a plurality of bias contacts; for each bias contact, a switch capable of applying a potential on the bias contact; two detection contacts arranged at the ends of the first strip; and a detection circuit having its activation causing the turning off of the switches and the comparison with a threshold of the resistance between the detection contacts.
Abstract:
An integrated circuit including a plurality of first semiconductor strips of a first conductivity type and of second semiconductor strips of a second conductivity type arranged in alternated and contiguous fashion on a region of the second conductivity type, including for each of the first strips: a plurality of bias contacts; for each bias contact, a switch capable of applying a potential on the bias contact; two detection contacts arranged at the ends of the first strip; and a detection circuit having its activation causing the turning off of the switches and the comparison with a threshold of the resistance between the detection contacts.
Abstract:
An integrated circuit, including: a semiconductor substrate of a first conductivity type; a plurality of regions of the first conductivity type vertically extending from the surface of the substrate, each of the regions being laterally delimited all along its periphery by a region of the second conductivity type; and a device for detecting a variation of the substrate resistance between each region of the first conductivity type and an area for biasing the substrate to a reference voltage.