Abstract:
Provided is an acoustic transducer including: a semiconductor substrate; a vibrating membrane provided above the semiconductor substrate, including a vibrating electrode; and a fixed membrane provided above the semiconductor substrate, including a fixed electrode, the acoustic transducer detecting a sound wave according to changes in capacitances between the vibrating electrode and the fixed electrode, converting the sound wave into electrical signals, and outputting the electrical signals. At least one of the vibrating electrode and the fixed electrode is divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting the electrical signals.
Abstract:
A micro-electro-mechanical device, wherein a platform is formed in a top substrate and is configured to turn through a rotation angle. The platform has a slit and faces a cavity. A plurality of integrated photodetectors is formed in a bottom substrate so as to detect the light through the slit and generate signals correlated to the light through the slit. The area of the slit varies with the rotation angle of the platform and causes diffraction, more or less marked as a function of the angle. The difference between the signals of two photodetectors arranged at different positions with respect to the slit yields the angle.
Abstract:
A MEMS force sensor has: a substrate; a fixed electrode coupled to the substrate; and a mobile electrode suspended above the substrate at the fixed electrode to define a sensing capacitor, the mobile electrode being designed to undergo deformation due to application of a force to be detected. A dielectric material region is set on the fixed electrode and spaced apart by an air gap from the mobile electrode, in resting conditions. The mobile electrode comes to bear upon the dielectric material region upon application of a minimum detectable value of the force, so that a contact surface between the mobile electrode and the dielectric material region increases, in particular in a substantially linear way, as the force increases.
Abstract:
A micro-electro-mechanical device, wherein a platform is formed in a top substrate and is configured to turn through a rotation angle. The platform has a slit and faces a cavity. A plurality of integrated photodetectors is formed in a bottom substrate so as to detect the light through the slit and generate signals correlated to the light through the slit. The area of the slit varies with the rotation angle of the platform and causes diffraction, more or less marked as a function of the angle. The difference between the signals of two photodetectors arranged at different positions with respect to the slit yields the angle.
Abstract:
An assembly of a MEMS sensor device envisages: a first die, integrating a micromechanical detection structure and having an external main face; a second die, integrating an electronic circuit operatively coupled to the micromechanical detection structure, electrically and mechanically coupled to the first die and having a respective external main face. Both of the external main faces of the first die and of the second die are set in direct contact with an environment external to the assembly, without interposition of a package.
Abstract:
A mirror micromechanical structure has a mobile mass carrying a mirror element. The mass is drivable in rotation for reflecting an incident light beam with a desired angular range. The mobile mass is suspended above a cavity obtained in a supporting body. The cavity is shaped so that the supporting body does not hinder the reflected light beam within the desired angular range. In particular, the cavity extends as far as a first side edge wall of the supporting body of the mirror micromechanical structure. The cavity is open towards, and in communication with, the outside of the mirror micromechanical structure at the first side edge wall.
Abstract:
A micromechanical structure for a MEMS capacitive acoustic transducer, has: a substrate made of semiconductor material, having a front surface lying in a horizontal plane; a membrane, coupled to the substrate and designed to undergo deformation in the presence of incident acoustic-pressure waves; a fixed electrode, which is rigid with respect to the acoustic-pressure waves and is coupled to the substrate by means of an anchorage structure, in a suspended position facing the membrane to form a detection capacitor. The anchorage structure has at least one pillar element, which is at least in part distinct from the fixed electrode and supports the fixed electrode in a position parallel to the horizontal plane.
Abstract:
A mirror micromechanical structure has a mobile mass carrying a mirror element. The mass is drivable in rotation for reflecting an incident light beam with a desired angular range. The mobile mass is suspended above a cavity obtained in a supporting body. The cavity is shaped so that the supporting body does not hinder the reflected light beam within the desired angular range. In particular, the cavity extends as far as a first side edge wall of the supporting body of the mirror micromechanical structure. The cavity is open towards, and in communication with, the outside of the mirror micromechanical structure at the first side edge wall.
Abstract:
A micromechanical structure for a MEMS capacitive acoustic transducer, has: a substrate of semiconductor material; a rigid electrode, at least in part of conductive material, coupled to the substrate; a membrane, at least in part of conductive material, facing the rigid electrode and coupled to the substrate, which undergoes deformation in the presence of incident acoustic pressure waves and is arranged between the substrate and the rigid electrode and has a first surface and a second surface, in fluid communication, respectively, with a first chamber and a second chamber, the first chamber being delimited at least in part by a first wall portion and by a second wall portion formed by the substrate, and the second chamber being delimited at least in part by the rigid electrode; and a stopper element, connected between the first and second wall portions for limiting the deformations of the membrane. At least one electrode-anchorage element couples the rigid electrode to the stopper element.
Abstract:
Described herein is a semiconductor integrated device assembly, which envisages: a package defining an internal space; a first die including semiconductor material; and a second die, distinct from the first die, also including semiconductor material; the first die and the second die are coupled to an inner surface of the package facing the internal space. The second die is shaped so as to partially overlap the first die, above the inner surface, with a portion suspended in cantilever fashion above the first die, by an overlapping distance.