Abstract:
Integrated circuit devices may include a fin-type active area, a semiconductor liner contacting a side wall of the fin-type active area and including a protrusion portion protruding outward from the fin-type active area in the vicinity of an edge of an upper surface of the fin-type active area, and an isolation layer spaced apart from the fin-type active area with the semiconductor liner therebetween. To manufacture the integrated circuit devices, a crystalline semiconductor layer covering the fin-type active area with a first thickness and an amorphous semiconductor layer covering the mask pattern with a second thickness may be formed, an extended crystalline semiconductor layer covering the mask pattern may be formed by crystalizing the amorphous semiconductor layer, and a semiconductor liner including a protrusion portion may be formed from the extended crystalline semiconductor layer and the crystalline semiconductor layer.
Abstract:
An integrated circuit device includes a substrate including a device active region, a fin-type active region protruding from the substrate on the device active region, a gate line crossing the fin-type active region and overlapping a surface and opposite sidewalls of the fin-type active region, an insulating spacer disposed on sidewalls of the gate line, a source region and a drain region disposed on the fin-type active region at opposite sides of the gate line, a first conductive plug connected the source or drain regions, and a capping layer disposed on the gate line and extending parallel to the gate line. The capping layer includes a first part overlapping the gate line, and a second part overlapping the insulating spacer. The first and second parts have different compositions with respect to each other. The second part contacts the first part and the first conductive plug.
Abstract:
Semiconductor devices are providing including a first isolation region configured to define a first fin active region protruding from a substrate, first gate patterns on the first fin active region, and a first epitaxial region in the first fin active region between the first gate patterns. Sidewalls of the first epitaxial region have first inflection points so that an upper width of the first epitaxial region is greater than a lower width of the first epitaxial region.
Abstract:
A method of manufacturing a semiconductor device includes forming a preliminary fin-type active pattern extending in a first direction, forming a device isolation pattern covering a lower portion of the preliminary fin-type active pattern, forming a gate structure extending in a second direction and crossing over the preliminary fin-type active pattern, forming a fin-type active pattern having a first region and a second region, forming a preliminary impurity-doped pattern on the second region by using a selective epitaxial-growth process, and forming an impurity-doped pattern by injecting impurities using a plasma doping process, wherein the upper surface of the first region is at a first level and the upper surface of the second region is at a second level lower than the first level.
Abstract:
Methods of fabricating a semiconductor device include forming a gate pattern on a substrate, forming spacers to cover both sidewalls of the gate pattern, forming an interlayer insulating layer to cover the gate pattern and the spacers, and forming contact holes to penetrate the interlayer insulating layer and expose sidewalls of the spacers. The forming of the spacers includes forming a spacer layer to cover the gate pattern and injecting silicon ions into the spacer layer. The spacer layer is a nitride-based low-k insulating layer, whose dielectric constant is lower than that of silicon oxide.