摘要:
A laser processing apparatus has one laser light source that simultaneously radiates laser beams with two wavelengths. Depth positions of focusing points for laser beams are gradually changed in a wafer. Three sets of modifying region groups, i.e., six layers of modifying region groups, are successively formed. One set of modifying region groups constitutes two layers and is formed at a time. The modifying region groups are separated, adjoined, or overlapped with each other along an estimated cut line of the wafer in a depth direction from a surface thereof.
摘要:
A semiconductor apparatus is disclosed. The semiconductor apparatus includes a semiconductor substrate that has a first surface and a second surface opposite to each other. The semiconductor apparatus further includes multiple double-sided electrode elements each having a pair of electrodes located respectively on the first and second surfaces of the semiconductor substrate. A current flows between the first and second electrode. Each double-sided electrode element has a PN column region located in the semiconductor substrate. The semiconductor apparatus further includes an insulation trench that surrounds each of multiple double-sided electrode elements, and that insulates and separates the multiple double-sided electrode elements from each other.
摘要:
A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are, respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.
摘要:
An oscillating angular speed sensor includes a detector, a driving portion, and a separating portion. When an angular speed is generated while the detector is driven to oscillate by the driving portion, Coriolis force is applied to the detector. Therefore, the angular speed is detected based on a capacitance variation in accordance with a variation of an interval between a movable electrode and a fixed electrode of the detector. The separating portion is distanced from the detector and the driving portion, and is configured to separate a first space accommodating the detector and a second space accommodating the driving portion.
摘要:
A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are, respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.
摘要:
A separating device for separating a semiconductor substrate includes: a cutting element for cutting the semiconductor substrate into a plurality of chips along with a cutting line on the semiconductor substrate; an adsorbing element for adsorbing a dust on a surface of the semiconductor substrate by using electrostatic force; and a static electricity generating element for generating static electricity and for controlling the static electricity in order to remove the dust from the adsorbing element.
摘要:
A physical quantity sensor for detecting a physical quantity includes: a first substrate having a first physical quantity detection element; a second substrate having a second physical quantity detection element, wherein the second substrate contacts the first substrate; and an accommodation space disposed between the first substrate and the second substrate. The first physical quantity detection element is disposed in the accommodation space. The first physical quantity detection element is protected with the first substrate and the second substrate since the first physical quantity detection element is sealed in the accommodation space.
摘要:
A semiconductor device includes: a sensor element having a plate shape with a surface and including a sensor structure disposed in a surface portion of the sensor element; and a plate-shaped cap element bonded to the surface of the sensor element. The cap element has a wiring pattern portion facing the sensor element. The wiring pattern portion connects an outer periphery of the surface of the sensor element and the sensor structure so that the sensor structure is electrically coupled with an external element via the outer periphery. The sensor element does not have a complicated multi-layered structure, so that the sensor element is simplified. Further, the dimensions of the device are reduced.
摘要:
A semiconductor device includes a first substrate including first, second and third layers; a second substrate; and a loop bump. The first and second substrates provides an electric device and physical quantity sensor. The first layer is a shield for protecting the electric device and physical quantity sensor. The physical quantity sensor includes a movable portion surrounded by a first loop layer of the third layer. The loop bump is disposed between the first and second substrates and surrounds the movable portion, and is electrically coupled with the first loop layer so that the loop bump, first loop layer, first layer and second substrate shield the electric device and physical quantity sensor. The first substrate includes inner and outer pads which are electrically coupled through a wire layer which is electrically insulated from the loop bump, so that a signal from the movable portion is output to and external circuit.
摘要:
A single crystal silicon substrate (1) is bonded through an SiO2 film (9) to a single crystal silicon substrate (8), and the single crystal silicon substrate (1) is made into a thin film. A cantilever (13) is formed on the single crystal silicon substrate (1), and the thickness of the cantilever (13) in a direction parallel to the surface of the single crystal silicon substrate (1) is made smaller than the thickness of the cantilever in the direction of the depth of the single crystal silicon substrate (1), and movable in a direction parallel to the substrate surface. In addition, the surface of the cantilever (13) and the part of the single crystal silicon substrate (1), opposing the cantilever (13), are respectively, coated with an SiO2 film (5), so that an electrode short circuit is prevented in a capacity-type sensor. In addition, a signal-processing circuit (10) is formed on the single crystal silicon substrate (1), so that signal processing is performed as the cantilever (13) moves.