摘要:
An optical resonator, a photonic system and a method of optical resonance employ optical waveguide segments connected together with total internal reflection (TIR) mirrors to form a closed loop. The optical resonator includes the optical waveguide segments, the TIR mirrors and a photo-tunneling input/output (I/O) port. The photo-tunneling I/O port includes one of the TIR mirrors. The method includes propagating and reflecting an optical signal, or a portion thereof, in the optical resonator, and transmitting a portion of the optical signal through the photo-tunneling I/O port. The photonic system includes the optical resonator and a source of an optical signal.
摘要:
An optical resonator, a photonic system and a method of optical resonance employ optical waveguide segments connected together with total internal reflection (TIR) mirrors to form a closed loop. The optical resonator includes the optical waveguide segments, an intracavity active element coupled to a designated one of the optical waveguide segments, the TIR mirrors and a photo-tunneling input/output (I/O) port. The photo-tunneling I/O port includes one of the TIR mirrors. The method includes propagating and reflecting the optical signal, or a portion thereof, in the optical resonator, transmitting a portion of the optical signal through the I/O port, and influencing the optical signal. The photonic system includes the optical resonator with optical gain and a source of an optical signal.
摘要:
An optical interconnect has a plurality of optical data sources, a plurality of optical data receivers, a diffractive optical element configured to diffract an optical beam from at least one alignment optical source to at least one sensor, and an aligning element configured to align optical beams from the optical data sources to said optical data receivers, according to readings from the sensor.
摘要:
An optical interconnect has a plurality of optical sources, a first lens configured to collimate optical beams from the plurality of optical sources, a second lens configured to refocus the optical beams, and a plurality of optical receivers configured to receive the refocused optical beams from the second lens.
摘要:
Various embodiments of the present invention are directed to three-dimensional crossbar arrays. In one aspect of the present invention, a three-dimensional crossbar array includes a plurality of crossbar arrays, a first demultiplexer, a second demultiplexer, and a third demultiplexer. Each crossbar array includes a first layer of nanowires, a second layer of nanowires overlaying the first layer of nanowires, and a third layer of nanowires overlaying the second layer of nanowires. The first demultiplexer is configured to address nanowires in the first layer of nanowires of each crossbar array, the second demultiplexer is configured to address nanowires in the second layer of nanowires of each crossbar array, and the third demultiplexer is configured to supply a signal to the nanowires in the third layer of nanowires of each crossbar array.
摘要:
Methods of making nanometer-scale semiconductor structures with controlled size are disclosed. Semiconductor structures that include one or more nanowires are also disclosed. The nanowires can include a passivation layer or have a hollow tube structure.
摘要:
Systems and methods for subterranean distribution of optical signals on integrated circuits are disclosed. A semiconductor device comprising a multi-layer substrate includes a surface layer and a subterranean layer. Electrical devices are formed in the surface layer. Optoelectronic devices may be formed in the subterranean layer or the surface layer and configured for converting electrical signals to optical signals or converting optical signals to electrical signals. At least one optical waveguide is formed in the subterranean layer and configured for transmitting optical signals through the subterranean layer. Electrical vias may be included for coupling electrical signals between the subterranean layer and the surface layer. In addition, optical vias may be for coupling optical signals between the subterranean layer and the surface layer
摘要:
Lithography tools and substrates are aligned by generating geometric interference patterns using optical gratings associated with the lithography tools and substrates. In some embodiments, the relative position between a substrate and lithography tool is adjusted to cause at least one geometric shape to have a predetermined size or shape representing acceptable alignment. In additional embodiments, Moiré patterns that exhibit varying sensitivity are used to align substrates and lithography tools. Furthermore, lithography tools and substrates are aligned by causing radiation to interact with optical gratings positioned between the lithography tools and substrates. Lithography tools include an optical grating configured to generate a portion of an interference pattern that exhibits a sensitivity that increases as the relative position between the tools and a substrate moves towards a predetermined alignment position.
摘要:
An apparatus for forming a pattern in a curable material carried on a substrate having one or more components with coefficients of thermal expansion that are substantially equal to the coefficient of thermal expansion of the substrate.
摘要:
Raman systems include a radiation source, a radiation detector, and a Raman device or signal-enhancing structure. Raman devices include a tunable resonant cavity and a Raman signal-enhancing structure coupled to the cavity. The cavity includes a first reflective member, a second reflective member, and an electro-optic material disposed between the reflective members. The electro-optic material exhibits a refractive index that varies in response to an applied electrical field. Raman signal-enhancing structures include a substantially planar layer of Raman signal-enhancing material having a major surface, a support structure extending from the major surface, and a substantially planar member comprising a Raman signal-enhancing material disposed on an end of the support structure opposite the layer of Raman signal-enhancing material. The support structure separates at least a portion of the planar member from the layer of Raman signal-enhancing material by a selected distance of less than about fifty nanometers.