Abstract:
A polymerization process and the resulting polymer composition, said process comprising polymerizing one or more addition polymerizable monomers and a polymerizable shuttling agent in the presence of at least one addition polymerization catalyst comprising a metal compound or complex and a cocatalyst under conditions characterized by the formation of a branched polymer, preferably comprising pseudo-block molecular architecture.
Abstract:
A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
Two or more chemically distinguishable ethylenically unsaturated polymers, at least one having from 0.001 to 50 mole percent unsaturation and at least one other having an expected Tg or measured Tm value greater than 100° C. are cross-metathesized to form thermoplastic elastomers having improved performance properties.
Abstract:
The present invention relates to olefinic compositions comprising a functionalized branched olefin copolymer containing functionalized sidechains derived from olefin and at least one chain end nucleophilic heteroatom containing functional group with at least one protic hydrogen, optionally with one or more copolymerizable monomers, the copolymer characterized by having A) a Tg 100° C.; C) an elongation at break of greater than or equal to 500 percent; D) a Tensile Strength of greater than or equal to 1,500 psi (10,300 kPa) at 25° C.; E) a TMA temperature>80° C., and F) an elastic recovery of greater than or equal to 50 percent.
Abstract:
A polymerization process and the resulting polymer composition, said process comprising polymerizing one or more addition polymerizable monomers and a polymerizable shuttling agent in the presence of at least one addition polymerization catalyst comprising a metal compound or complex and a cocatalyst under conditions characterized by the formation of a branched polymer, preferably comprising pseudo-block molecular architecture.
Abstract:
The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
Abstract:
The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
Abstract:
The invention provides for polymerization catalyst compositions, and for methods for introducing the catalyst compositions into a polymerization reactor. More particularly, the method combines a catalyst component containing slurry and a catalyst component containing solution to form the completed catalyst composition for introduction into the polymerization reactor. The invention is also directed to methods of preparing the catalyst component slurry, the catalyst component solution and the catalyst compositions, to methods of controlling the properties of polymer products utilizing the catalyst compositions, and to polymers produced therefrom.
Abstract:
The present invention relates to a catalyst composition and a method for making the catalyst composition of a polymerization catalyst and a carbonyl compound. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier. More particularly, the polymerization catalyst comprises a bulky ligand metallocene-type catalyst system.
Abstract:
A process for the oxidation of a compound having a terminal carbon-carbon double bond to produce the corresponding aldehyde is disclosed. In one embodiment, the process comprises contacting the compound with molecular oxygen in the presence of a Group VIII metal component initially substantially free of NO ligands and NO.sub.2 ligands in an amount effective to promote the oxidation of the compound, a reoxidation component in an amount effective to reoxidize a reduced Group VIII metal component to the Group VIII metal component and at least one alcohol selected from secondary alcohols, tertiary alcohols and mixture thereof in an amount effective to increase the aldehyde selectivity of the oxidation. The contacting occurs at conditions effective to oxidize the compound and the form the corresponding aldehyde.