Abstract:
There is provided a rotor of a rotating electrical machine including a pair of field core bodies that are provided so as to enclose the field coil via the insulation bobbin around which the field coil is wound, in which a claw-shaped magnetic pole extending from an outer circumferential section of the field core body in an axial direction is provided on the field core body. The insulation bobbin has a plurality of flange sections extending from the base section of the claw-shaped magnetic pole along an inner surface of the claw-shaped magnetic pole of the field core body, and a plurality of thin portions are formed in the root section of the flange section at intervals in a circumferential direction.
Abstract:
Disclosed is a sodium-ion secondary battery having excellent charge and discharge efficiencies as well as excellent charge and discharge characteristics, wherein charging and discharging can be repeated without causing problems such as deterioration in battery performance. Specifically disclosed is a sodium ion secondary battery which is provided with a positive electrode, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte solution containing a nonaqueous solvent. The nonaqueous solvent is substantially composed of a saturated cyclic carbonate (excluding the use of ethylene carbonate by itself), or a mixed solvent of a saturated cyclic carbonate and a chain carbonate, and a hard carbon is used as the negative electrode active material. It is preferable that the nonaqueous solvent used for the sodium-ion secondary battery is substantially composed of propylene carbonate, a mixed solvent of ethylene carbonate and diethyl carbonate, or a mixed solvent of ethylene carbonate and propylene carbonate.
Abstract:
Disclosed herein is a device that includes a plurality of memory circuits and a refresh control circuit configured to generate a plurality of refresh initiation signals such that one of the refresh initiation signals takes an active level. Each of the memory circuits comprises a memory cell array including a plurality of memory cells, at least one data terminal, a data read/write circuit performing a data read operation to read out read-data from a selected one of the memory cells and supply the read-data to the data terminal and a data write operation to receive write-data from the data terminal and write the write-data into a selected one of the memory cells, and a refresh circuit performing a data refresh operation on selected one or ones of the memory cells of the memory cell array in response to an associated one of the refresh initiation signals taking the active level.
Abstract:
A device includes a semiconductor substrate, a first penetration electrode and a plurality of second penetration electrodes each penetrating the semiconductor substrate, a first terminal and a plurality of second terminals formed on a one side of the substrate, and a third terminal and a plurality of fourth terminals formed on an opposite side of the substrate. Each of the first and third terminals is vertically aligned with and electrically connected to first penetration electrode. Each of the second terminals is vertically aligned with an associated one of the second penetration electrodes and electrically connected to another one of the second penetration terminals that is not vertically aligned with the associated second terminal. Each of fourth terminals is vertically aligned with and electrically connected to an associated one of the second penetration electrodes.
Abstract:
To provide a semiconductor device including a data input circuit and a data output circuit connected to a plurality of data input/output terminals, where at least one of the data input circuit and the data output circuit fetches data in response to multi-phase clock signals having different phases to be timing signals for fetching data, and adjusts a valid range for fetching data to be substantially uniform for each of the multi-phase clock signals. According to the present invention, the window width of data can be made uniform by individually adjusting the multi-phase clock signals that are input or output timing signals, and thus characteristics of the semiconductor device can be improved.
Abstract:
A semiconductor memory device, in which a plurality of data output lines are commonly used by a plurality of banks, includes a plurality of gate circuits each of which are provided at each intermediate position of the plurality of the data output lines, and is controlled to be turned on during a normal operation mode and to be turned off at least when reading data during a parallel test mode, and a comparator circuit that inputs in parallel and compares a signal of each separated part of the each data output line separated by the plurality of the gate circuit being turned off.
Abstract:
A semiconductor device includes a first circuit, a second circuit, and a first voltage dividing circuit. The first circuit is coupled to a first terminal. The first circuit is operable by a first voltage supplied from the first terminal. The second circuit is coupled through a first resistive element to the first terminal. The second circuit is operable by a second voltage supplied through the first resistive element from the first terminal. The second voltage is smaller in absolute value than the first voltage. The first voltage dividing circuit is coupled to a first node between the first resistive element and the second circuit. The first voltage dividing circuit has a conductive state and a non-conductive state. The first voltage dividing circuit is kept in the conductive state while applying the first voltage to the first terminal to allow the first circuit to operate by the first voltage.
Abstract:
A signal transmission circuit includes first and second power source wirings, and a plurality of differential circuits connected in series between the first and second power source wirings. A signal transmission system includes a plurality of pairs of signal wirings, an output circuit supplying a differential signal to each of the pairs of signal wirings, and an input circuit receiving the differential signals via the pairs of signal wirings, wherein the output circuit includes first and second power source wirings, and a plurality of differential output circuits connected in series between the first and second power source wirings, and the input circuit includes a plurality of differential input circuits respectively corresponding to the differential output circuits.
Abstract:
A semiconductor device selects one mask pattern among from a plurality of the mask patterns, which are stored in a mask resister circuit for mask controlling of a bit width (vertical axis), by a mask pattern selection signal, and controls input and output of data based on the selected mask pattern and a mask control signal of a bit string (horizontal axis), when inputting and outputting data having the consecutive bit string (horizontal axis) and a plurality of the bit widths (vertical axis). A read data converter circuit and a write data converter circuit select to mask or unmask each data signal during burst reading or writing, and masks the data signal. The masked data signal is not written in a memory cell by inactivating a write data buffer circuit during writing, and is not read out by inactivating a data driver circuit connecting with an external input and output terminal.
Abstract:
A semiconductor memory device, in which a plurality of data output lines are commonly used by a plurality of banks, includes a plurality of gate circuits each of which are provided at each intermediate position of the plurality of the data output lines, and is controlled to be turned on during a normal operation mode and to be turned off at least when reading data during a parallel test mode, and a comparator circuit that inputs in parallel and compares a signal of each separated part of the each data output line separated by the plurality of the gate circuit being turned off.