Abstract:
An implantable electroacupuncture device (IEAD) treats Parkinson's disease or Essential Tremor through application of stimulation pulses applied to at least one of the acupoints on the chorea line. The IEAD includes an hermetically-sealed implantable electroacupuncture (EA) device and a conduit extending therefrom. At least one electrode is located on the outside of the housing. At least one electrode is located at an opening formed through the conduit. The housing contains a primary power source and pulse generation circuitry. A sensor wirelessly senses externally-generated operating commands, such as ON, OFF and AMPLITUDE. The pulse generation circuitry generates stimulation pulses. The stimulation pulses are applied to the specified acupoint or nerve through the electrodes in accordance with a specified stimulation regimen.
Abstract:
An implantable electroacupuncture device (IEAD) treats a disease or medical condition of a patient through application of stimulation pulses applied at a specified acupoint or other target tissue location at a very low duty cycle. In a preferred implementation, the IEAD is an implantable, coin-sized, self-contained, leadless device having at least two electrodes attached to an outside surface of its housing, with at least one electrode on the top or bottom surface of the housing functioning as a cathode, and at least one electrode on the perimeter edge of the housing functioning as an anode. The electrodes may be segmented to include an array of smaller cathodic or anodic electrodes, each of which may be selectively turned ON or OFF so as to provide a convenient mechanism for adjusting the density of the stimulus current flowing through the cathodic electrode surface area.
Abstract:
An implantable electroacupuncture device (IEAD) treats mental illness through application of stimulation pulses applied at a specified tissue location, including at least one of acupoints GV20 and EXHN3, or their underlying nerves. In one embodiment, the IEAD comprises an implantable, coin-sized, self-contained, leadless electroacupuncture device having at least two electrodes attached to an outside surface of its housing. The device generates stimulation pulses in accordance with a specified stimulation regimen. Power management circuitry within the device allows a primary battery, having a high internal impedance, to be used to power the device. The stimulation regimen generates stimulation pulses during a stimulation session of duration T3 minutes applied every T4 minutes. The duty cycle, or ratio T3/T4 is very low, no greater than 0.05. The low duty cycle and careful power management allow the IEAD to perform its intended function for several years.
Abstract:
An exemplary method includes determining a variability of a plurality of measurements of a cardiovascular parameter of a patient suffering from hypertension, the plurality of measurements recorded one at a time over a predetermined time period. The method further includes comparing the determined variability with a predetermined reference value. If the comparing indicates that the determined variability is less than the predetermined reference value, the method includes designating the patient to be within a first class of patients representative of patients that are likely to be responsive to subcutaneous neuromodulation therapy as a treatment for hypertension. If the comparing indicates that the determined variability is greater than the predetermined reference value, the method includes designating the patient to be within a second class of patients representative of patients that are likely to be unresponsive to subcutaneous neuromodulation therapy as a treatment for hypertension. Corresponding systems and methods are also described.
Abstract:
A method of treating a mental disorder of a patient includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a tissue location associated with the mental disorder. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
Abstract:
A method of treating cardiovascular disease in a patient includes generating, by an implantable stimulator configured to be implanted beneath a skin surface of the patient, stimulation sessions at a duty cycle that is less than 0.05 and applying, by the implantable stimulator in accordance with the duty cycle, the stimulation sessions to a tissue location associated with the cardiovascular disease. The duty cycle is a ratio of T3 to T4. Each stimulation session included in the stimulation sessions has a duration of T3 minutes and occurs at a rate of once every T4 minutes. The implantable stimulator is powered by a primary battery located within the implantable stimulator and having an internal impedance greater than 5 ohms.
Abstract:
An exemplary subcutaneous medical device implanted within a patient uses a coil-less magnetic field sensor included within the subcutaneous medical device to detect a toggling sequence between a presence and an absence of an externally-generated static magnetic field. The toggling sequence is representative of a digital data stream according to a digital wireless communication protocol. The subcutaneous medical device identifies, based on the detected toggling sequence and in accordance with the digital wireless communication protocol, a multi-bit command encoded within the digital data stream represented by the toggling sequence. The subcutaneous medical device further performs, in response to the identifying of the multi-bit command, an action associated with the multi-bit command. Corresponding methods and a corresponding external controller are also disclosed.
Abstract:
An exemplary electroacupuncture device may be implanted beneath a skin surface of a patient at a location corresponding to a joint affected by osteoarthritis and may perform methods for treating the osteoarthritis. In some implementations, the electroacupuncture device is powered by a primary battery located within the electroacupuncture device and having an internal impedance greater than 5 ohms and a capacity of less than 60 milliamp-hours (mAh).
Abstract:
An implantable electroacupuncture device (IEAD) treats a specified medical condition of a patient through application of electroacupuncture (EA) stimulation pulses applied substantially at or near a specified acupoint, its underlying nerves, or other target tissue location. The IEAD includes an IEAD housing having an electrode configuration thereon that includes at least two electrodes, and pulse generation circuitry located within the IEAD housing and electrically coupled to the at least two electrodes. The pulse generation circuitry is adapted to deliver stimulation pulses to the patient's body tissue at or near the target tissue location in accordance with a specified stimulation regimen, the stimulation regimen requiring that the stimulation session have a duration of T3 minutes and a rate of occurrence of once every T4 minutes, and wherein a ratio of T3/T4 is no greater than 0.05.
Abstract:
An implantable electroacupuncture device (IEAD) treats an erectile dysfunction condition of a patient through application of stimulation pulses applied at a target tissue location underlying, or in the vicinity of, at least one of acupoints BL52, BL23 or GV4. The IEAD includes an IEAD housing having an electrode configuration thereon that includes at least two electrodes, and pulse generation circuitry located within the IEAD housing and electrically coupled to the at least two electrodes. The pulse generation circuitry is adapted to deliver EA stimulation pulses to the patient's body tissue at or near the target tissue location in accordance with a specified stimulation regimen, the stimulation regimen requiring that the stimulation session have a duration of T3 minutes and a rate of occurrence of once every T4 minutes, and wherein a ratio of T3/T4 is no greater than 0.05.