Abstract:
Apparatus include a microscope including an objective and a stage for positioning a test object relative to the objective, the stage being moveable with respect to the objective, and a sensor system, that includes a sensor light source, an interferometric sensor configured to receive light from the sensor light source, to introduce an optical path difference (OPD) between a first portion and a second portion of the light, the OPD being related to a distance between the objective lens and the stage, and to combine the first and second portions of the light to provide output light, a detector configured to detect the output light from the interferometric sensor, a fiber waveguide configured to direct light between the sensor light source, the interferometric sensor and the detector, a tunable optical cavity in a path of the light from the sensor light source and the interferometric sensor, and an electronic controller in communication with the detector, the electronic controller being configured to determine information related to the OPD based on the detected output light.
Abstract:
A method includes comparing a scanning interferometry signal obtained for a location of a test object to each of multiple model signals corresponding to different model parameters for modeling the test object, wherein for each model signal the comparing includes calculating a correlation function between the scanning interferometry signal and the model signal to identify a surface-height offset between the scanning interferometry signal and the model signal and, based on the identified surface-height offset, calculating a height-offset compensated merit value indicative of a similarity between the scanning interferometry signal and the model signal for a common surface height. The method further includes, based on the respective merit values for the different model signals, determining a test object parameter at the location of the test object.
Abstract:
In general, in one aspect, the invention features apparatus that includes a broadband scanning interferometry system including interferometer optics for combining test light from a test object with reference light from a reference object to form an interference pattern on a detector, wherein the test and reference light are derived from a common light source. The interferometry system further includes a scanning stage configured to scan an optical path difference (OPD) between the test and reference light from the common source to the detector and a detector system including the detector for recording the interference pattern for each of a series of OPD increments, wherein the frequency of each OPD increment defines a frame rate. The interferometer optics are configured to produce at least two monitor interferometry signals each indicative of changes in the OPD as the OPD is scanned, wherein the detector system is further configured to record the monitor interferometry signals. The apparatus also includes an electronic processor electronically coupled to the detection system and scanning stage and configured to determine information about the OPD increments with sensitivity to perturbations to the OPD increments at frequencies greater than the frame rate.
Abstract:
Disclosed is a system including: (i) an interferometer configured to direct test electromagnetic radiation to a test surface and reference electromagnetic radiation to a reference surface and subsequently combine the electromagnetic radiation to form an interference pattern, the electromagnetic radiation being derived from a common source; (ii) a multi-element detector; and (iii) one or more optics configured to image the interference pattern onto the detector so that different elements of the detector correspond to different illumination angles of the test surface by the test electromagnetic radiation. The apparatus is configured to operate in a first mode in which the combined light is directed to the detector so that the different regions of the detector correspond to the different illumination angles of the test surface by the test light, and a second mode in which the different regions of the detector correspond to the different regions of the test surface illuminated by the test light to enable a profiling mode of operation.
Abstract:
Disclosed is a system including: (i) an interferometer configured to direct test electromagnetic radiation to a test surface and reference electromagnetic radiation to a reference surface and subsequently combine the electromagnetic radiation to form an interference pattern, the electromagnetic radiation being derived from a common source; (ii) a multi-element detector; and (iii) one or more optics configured to image the interference pattern onto the detector so that different elements of the detector correspond to different illumination angles of the test surface by the test electromagnetic radiation. The apparatus is configured to operate in a first mode in which the combined light is directed to the detector so that the different regions of the detector correspond to the different illumination angles of the test surface by the test light, and a second mode in which the different regions of the detector correspond to the different regions of the test surface illuminated by the test light to enable a profiling mode of operation.
Abstract:
Apparatus include a microscope including an objective and a stage for positioning a test object relative to the objective, the stage being moveable with respect to the objective, and a sensor system, that includes a sensor light source, an interferometric sensor configured to receive light from the sensor light source, to introduce an optical path difference (OPD) between a first portion and a second portion of the light, the OPD being related to a distance between the objective lens and the stage, and to combine the first and second portions of the light to provide output light, a detector configured to detect the output light from the interferometric sensor, a fiber waveguide configured to direct light between the sensor light source, the interferometric sensor and the detector, a tunable optical cavity in a path of the light from the sensor light source and the interferometric sensor, and an electronic controller in communication with the detector, the electronic controller being configured to determine information related to the OPD based on the detected output light.
Abstract:
A method is disclosed which includes, for each of multiple areas of a test surface on a test object having different reflectivities, using an interferometry system to measure each area in a first mode of operation that measures information about the reflectivity of the area over a range of angles and wavelengths; using the same interferometry-system to measure the test surface in a second mode of operation that interferometrically profiles a topography of the test surface over a range including at least some of the multiple areas; and correcting the profile based on the information about the reflectivity of the multiple areas to reduce errors.
Abstract:
Disclosed is a system including: (i) an interferometer configured to direct test electromagnetic radiation to a test surface and reference electromagnetic radiation to a reference surface and subsequently combine the electromagnetic radiation to form an interference pattern, the electromagnetic radiation being derived from a common source; (ii) a multi-element detector; and (iii) one or more optics configured to image the interference pattern onto the detector so that different elements of the detector correspond to different illumination angles of the test surface by the test electromagnetic radiation.
Abstract:
Methods and related systems for determining properties of optical systems (e.g., interferometers) and/or optical elements (e.g., lenses and/or lens systems) are described. For example, information related to an optical thickness mismatch of an interferometer can be determined by providing scanning interferometry data. The data typically include obtaining one or more interference signals each corresponding to a different spatial location of a test object. A phase is determined for each of multiple frequencies of each interference signal. The information related to the optical thickness mismatch is determined based on the phase for each of the multiple frequencies of the interference signal(s).
Abstract:
Methods and related systems for determining properties of optical systems (e.g., interferometers) and/or optical elements (e.g., lenses and/or lens systems) are described. For example, information related to an optical thickness mismatch of an interferometer can be determined by providing scanning interferometry data. The data typically include obtaining one or more interference signals each corresponding to a different spatial location of a test object. A phase is determined for each of multiple frequencies of each interference signal. The information related to the optical thickness mismatch is determined based on the phase for each of the multiple frequencies of the interference signal(s).